Given a momentum operator $$ \def\bra #1{\langle#1|} \def\ket #1{|#1\rangle} \def\braket #1{\langle#1\rangle} $$
$$ P \equiv - i \hbar \frac{\partial}{\partial x}, $$ I want to calculate $\bra{a} P \ket{a}$. Here are the steps provided by my professor.
$$\begin{aligned} \bra{a} P \ket{a} &= \int dx \int dx' \braket{a | x} \bra{x} P \ket{x'} \braket{x' | a} && \left( \text{insert two sets of bases} \int dx \ket{x} \bra{x} = I \right) \\ &= \int dx \int dx' \braket{a | x} \bra{x} \left(- i \hbar \frac{\partial}{\partial x'}\right) \ket{x'} \braket{x' | a} && \left( \text{pull in } P = - i \hbar \frac{\partial}{\partial x'} \right) \\ &= \int dx \int dx' - i \hbar \braket{a | x} \braket{x | x'} \left(\frac{\partial}{\partial x'}\right) \braket{x' | a} && \left( \text{move } \ket{x'} \text{ to the left} \right) \\ &= \int dx \int dx' - i \hbar \braket{a | x} \delta(x - x') \left(\frac{\partial}{\partial x'}\right) \braket{x' | a} \\ &= \int dx - i \hbar \braket{a | x} \left(\frac{\partial}{\partial x}\right) \braket{x | a} && \left( \int f(x') \delta(x - x')\, dx' = f(x)\right) \\ &= -i \hbar \int dx \Psi_a^*(x) \left(\frac{\partial}{\partial x}\right) \Psi_a(x) && \left( \braket{x | a} = \Psi_a(x) \right) \\ \end{aligned}$$
I have a few questions.
- Is $\ket{x'}$ a function? Can I treat it as $f(x')$.
- If $x$ and $x'$ mean "position", why they can become a series of the basis? $\int dx\, \ket{x} \bra{x} = I$
- Is the equation below correct?
$$ \left(- i \hbar \frac{\partial}{\partial x'}\right) \ket{x'} \braket{x' | a} = - i \hbar \left( \frac{\partial}{\partial x'} \ket{x'} \braket{x' | a} \right) $$
- Why $\ket{x'}$ can be moved to the left at the third step?