The Polyakov action for a string in spacetime $(M, g)$ is
$$\mathcal{L} = \frac{T}{2}\sqrt{-\det(h)}h^{\eta\lambda}(\sigma)g_{\mu\nu}(x(\sigma))\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\frac{\partial x^{\nu}}{\partial \sigma^{\lambda}}$$
And Euler-Lagrange equations for a classical field reads
$$\frac{\partial}{\partial \sigma^{\rho}}\frac{\partial \mathcal{L}}{\partial(\frac{\partial x^{\alpha}}{\partial \sigma^{\rho}})}-\frac{\partial \mathcal{L}}{\partial x^{\alpha}} = 0$$
Using the fact that $\displaystyle \frac{\partial \mathcal{L}}{\partial x^{\alpha}} = \frac{T}{2}\sqrt{-\det(h)}h^{\eta\lambda}(\sigma)\frac{\partial g_{\mu\nu}}{\partial x^{\alpha}}\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\frac{\partial x^{\nu}}{\partial \sigma^{\lambda}}$, we conclude that
$$\frac{\partial}{\partial \sigma^{\rho}}\biggr(\frac{T}{2}\sqrt{-\det(h)}h^{\eta\rho}(\sigma)g_{\mu\alpha}(x(\sigma))\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\biggr) - \frac{T}{2}\sqrt{-\det(h)}h^{\eta\lambda}(\sigma)\frac{\partial g_{\mu\nu}}{\partial x^{\alpha}}\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\frac{\partial x^{\nu}}{\partial \sigma^{\lambda}} = 0$$
$$\frac{\partial}{\partial\sigma^{\rho}}\sqrt{-\det(h)} = \frac{1}{2}\sqrt{-\det(h)}h^{\gamma\beta}(\sigma)\frac{\partial h_{\gamma\beta}}{\partial \sigma^{\rho}} = \frac{1}{2}\sqrt{-\det(h)}\Gamma^{\gamma}_{\rho\gamma}$$
$$\begin{align}\biggr(-\frac{T}{4}\sqrt{-\det(h)}\Gamma^{\gamma}_{\rho \gamma}h^{\eta\rho}(\sigma)g_{\mu\alpha}(x(\sigma))\frac{\partial x^{\mu}}{\partial\sigma^{\eta}} + \frac{T}{2}\sqrt{-\det(h)}\frac{\partial h^{\eta\rho}}{\partial \sigma^{\rho}}g_{\mu\alpha}(x(\sigma))\frac{\partial x^{\mu}}{\partial \sigma^{\eta}} &+ \frac{T}{2}\sqrt{-\det(h)}h^{\eta\rho}(\sigma)g_{\mu\alpha}(x(\sigma))\frac{\partial}{\partial \sigma^{\rho}}\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\biggr) - \frac{T}{2}\sqrt{-\det(h)}h^{\eta\lambda}(\sigma)\frac{\partial g_{\mu\nu}}{\partial x^{\alpha}}\frac{\partial x^{\mu}}{\partial \sigma^{\eta}}\frac{\partial x^{\nu}}{\partial \sigma^{\lambda}} &= 0\end{align}$$
Does this make any sense?
Note: I am looking for a derivation without using Poincaré and Weyl invariance (see section "Symmetries of the Polyakov Action" and the comments). Details of the derivation can be found here, here and here, while this is for the Nambu-Goto action.