I know the commutator of angular momentum operators are $$ [J_i,J_j]=\mathrm i\hbar \varepsilon_{ijk}J_k. $$ For spin-1/2 particles, $J_i=\frac\hbar2\sigma_i$ where $\sigma_i$ are Pauli matrices, and I can compute $\{J_i,J_j\}$ from the algebra of $\sigma_i$'s, $$ [\sigma_i,\sigma_j]= 2\mathrm i\varepsilon_{ijk}\sigma_{k}, \quad \{\sigma_i,\sigma_j\}=2\delta_{ij}1 \!\!1_2. $$ When it comes to higher dimensons, these relations are broken.
I want to know what are the relations in higher dimensions.
This answer shows the case for a fundamental representation of $SU(N)$, $$ \{t^{A},t^{B}\} = \frac{2N}{d}\delta^{AB}\cdot 1_{d} + d_{ABC}t^{C},\tag{1} $$ where $$ \mathrm{Tr}[t^{A}t^{B}] = N\delta_{AB}\quad d_{ABC} = \frac{1}{N}\mathrm{Tr}[\{t^{A},t^{B}\}t^{C}].\tag{2} $$ If I substitude Eq.(1) into Eq.(2), I get $$ d_{ABC}=\frac1N \frac{2N}{d}\frac1N\mathrm{Tr}[t^At^B] \cdot \mathrm{Tr}[t^C] +\frac1N d_{ABD}\mathrm{Tr}[t^Dt^C] $$ where $\mathrm{Tr}[t^C]=0$. Above equation dosen't tell me how to compute $d_{ABC}$, since $\mathrm {Tr}[t^D t^C]=\delta_{DC}\mathrm{Tr}[1_d]=N\delta_{DC}$.