In QFT written by Peskin and Schroeder, it is discussed how correlation function is evaluated in Euclidean space, on page 292 to 293, In (9.48) $$<\phi (x_{E1})\phi(x_{E2})>=\int \frac{d^4k_E}{(2\pi)^4}\frac{e^{ik_E\Delta x_E}}{k_E^2+m^2}.\tag{9.48}$$In (9.27) $$I=\int \frac{d^4k}{(2\pi)^4}\frac{ie^{-ik\Delta x}}{k^2-m^2+i\epsilon}.\tag{9.27}$$ At first, PS told us time axis is wick rotated in clockwise direction, $x^o \rightarrow -ix^o_E$ which is fine and $$I=\int \frac{d^4k}{(2\pi)^4}\frac{ie^{-ik^o(-i\Delta x^o_E)+i\vec{k}\vec{\Delta x}}}{k^2-m^2+i\epsilon}$$ To proceed, I do not wick rotate the $k^o$ but just define $k^o_E=ik^o$, hence $k^o_E$ runs from $-i\infty$ to $+i\infty$ and define $k^j_E=k^j$ $$I=-i\int_{-i\infty}^{+i\infty} \frac{dk^o_E}{2\pi} \int \frac{d^3k_E}{(2\pi)^3}\frac{ie^{ik^o_E\Delta x^o_E+i\vec{k}\vec{\Delta x}}}{-(k^o_E)^2-(\vec{k_E})^2+m^2-i\epsilon}$$ $$I=\int_{-i\infty}^{+i\infty} \frac{dk^o_E}{2\pi} \int \frac{d^3k_E}{(2\pi)^3}\frac{e^{ik^o_E\Delta x^o_E+i\vec{k}\vec{\Delta x}}}{-(k^o_E)^2-(\vec{k_E})^2+m^2-i\epsilon}.\tag{a}$$ It seems correct but the $k^o_E$ is along imaginary axis, if I tried to wick rotate $k^o_E$, since poles of $k^o$ are $\pm E_k \mp i\epsilon$, poles of $k^o_E$ are $\pm iE_k \pm\epsilon$, thus $k^o_E$ should be rotated in anticlockwise direction, and it gives $$I=\int_{\infty}^{-\infty} \frac{dk^o_E}{2\pi} \int \frac{d^3k_E}{(2\pi)^3}\frac{e^{ik^o_E\Delta x^o_E+i\vec{k}\vec{\Delta x}}}{-(k_E^2-m^2+i\epsilon)}$$ After I flipped the upper and lower limit of $k^o_E$, it gives $$I=\int \frac{d^4k_E}{(2\pi)^3}\frac{e^{-ik^o_E\Delta x^o_E+i\vec{k}\vec{\Delta x}}}{k_E^2-m^2+i\epsilon}$$ I modified after answered. This integral is after wick rotation of momentum axis. $$I=\int \frac{d^4k_E}{(2\pi)^3}\frac{e^{-ik^o_E\Delta x^o_E+i\vec{k}\vec{\Delta x}}}{k_E^2-m^2}.\tag{b}$$ I personally doubt 2 things:
- do we need to wick rotate both $x^o$-axis and $k^o$-axis? If we do not wick rotate $k^o$, how to interpret $k_E$?
- In PS working, $x^o$ is rotated in clockwise direction, while $k^o$ is rotated in anti-clockwise direction, is it permitted?