I wish to estimate the expectation value of the number operator : $$\langle \hat{N} \rangle =\langle \hat{a}^{\dagger} \hat{a} \rangle$$
I know the Hamiltonian operator of my system, and thus want the expectation value of this operator when taken between eigenstates of the Hamiltonian.
The Hamiltonian reads : $$\hat{H}=E_0 \hat{I_d} + i E_1 (\hat{a}^{\dagger}+\hat{a}) + E_2 (\hat{a}^{\dagger}+\hat{a})^2 $$ Or equivalently : $$\hat{H}=E_0 \hat{I_d} + i E_1 (\hat{a}^{\dagger}+\hat{a}) + E_2 ({\hat{a}^{\dagger}}^2+\hat{a}^{\dagger}\hat{a}+\hat{a}\hat{a}^{\dagger}+{\hat{a}}^2)$$
Where $\hat{I_d}$ is the identity operator, $\hat{a}^{\dagger}$ and $\hat{a}$ are respectively creation and anihilation operators, and where $E_0$,$E_1$ and $E_2$ are real numbers.
How would I go about finding the eigenstates $\vert \Psi_i \rangle$ of $\hat{H}$ ?
In order to then compute the expectation value of $\hat{N}$ when the system is in an eigenstate of $\hat{H}$: $$\frac{\langle \Psi_i \vert \hat{N} \vert \Psi_i \rangle}{\langle \Psi_i \vert\Psi_i \rangle}$$