Arguably$^{§}$ the (magnitude of) "absolute acceleration" of some specific participant $A$, at some specific event $\varepsilon_{A \Xi}$ (which is identified by $A$ having met and passed another identifiable participant $\Xi$ at this particular event), $| \mathbf a_A[ \, \Xi \, ] |$, is proportional to the inverse of the radius of curvature of the (timelike) worldline $\mathcal W_A$ traced by participant $A$ at this event,
$$| \mathbf a_A[ \, \Xi \, ] | \sim 1 \, / \, \rho[ \, \mathcal W_A, \varepsilon_{A \Xi} \, ].$$
Referring to a flat region (whose events have their geometric relations between each other expressable as spacetime interval values) this radius of curvature can be expressed in terms of spacetime interval values:
$$\normalsize \rho[ \, \mathcal W_A, \varepsilon_{A \Xi} \, ] \! := \! \! \left( \! \! \! \overset{{\huge \text{lim}}}{\small \overset{}{\begin{matrix}\varepsilon_{A \Psi} \in \mathcal P_A[ \, \Xi \, ], \cr \varepsilon_{A \Phi} \in \mathcal F_A[ \, \Xi \, ] : \cr s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Phi} \, ] \rightarrow 0 \end{matrix}}} \! \! \! \left[ \, \frac{\begin{matrix} \, \cr -{\, \, \, \overset{}{| \, s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Xi} \, ] \, s^2[ \, \varepsilon_{A \Xi}, \varepsilon_{A \Phi} \, ] \, s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Phi} \, ] \, | \, \, \, \, }} \cr \, \cr \, \end{matrix}}{
\begin{vmatrix} 0 & 1 & 1 & 1 \cr 1 & 0 & s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Xi} \, ] & s^2[ \, \varepsilon_{A \Xi}, \varepsilon_{A \Phi} \, ] \cr
1 & s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Xi} \, ] & 0 & s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Phi} \, ] \cr 1 & s^2[ \, \varepsilon_{A \Xi}, \varepsilon_{A \Phi} \, ] & s^2[ \, \varepsilon_{A \Psi}, \varepsilon_{A \Phi} \, ] & 0 \end{vmatrix}} \, \right] \right)^{\! \! \! \left(\frac{1}{2}\right)}$$
where $\mathcal P_A[ \, \Xi \, ] := \{ \, \varepsilon_{A \Psi} \in \mathcal W_A : \varepsilon_{A \Psi} \ll \varepsilon_{A \Xi} \, \}$ denotes the subset of $A$'s world line consisting of events which chronologically precede event $\varepsilon_{A \Xi}$;
and $\mathcal F_A[ \, \Xi \, ] := \{ \, \varepsilon_{A \Phi} \in \mathcal W_A : \varepsilon_{A \Xi} \ll \varepsilon_{A \Phi} \, \}$ the subset of $A$'s world line consisting of events which chronologically follow event $\varepsilon_{A \Xi}$.
Accordingly, $\rho[ \, \mathcal W_A, \varepsilon_{A \Xi} \, ]$ is manifestly invariant (wrt. evaluation in reference to any particular reference frame);
and any value of (the magnitude of) "absolute acceleration" reported by some "accelerometer" should be compared to the true value $c \, / \, \rho[ \, \mathcal W_A, \varepsilon_{A \Xi} \, ].$
$§$: Whether or not that's actually and strictly true may well be worth another explicit question.