Let's work through the problem through 2 different but equivalent ways:
Trigonometric approach
In the first approach, we do the same calculation that you did. I'll use uppercase $V$ to denote the amplitude (maximum voltage) and lowercase $v(t)$ to denote the time-dependent voltage.
We start with the voltages of the resistor and the inductor:
$$
\begin{align*}
v_{\text{R}}(t) &= V_{\text{R}} \sin(\omega t) \\
v_{\text{L}}(t) &= V_{\text{L}} \cos(\omega t)
\end{align*}
$$
and then just add them up:
$$
\begin{align*}
v_{\text{net}}(t)
&= v_{\text{R}}(t) + v_{\text{L}}(t) \\
&= V_{\text{R}} \sin(\omega t) + V_{\text{L}} \cos(\omega t)
\end{align*}$$
So far so good: this is the same answer as your derivation.
If you look closer, you might notice the resemblance to a trigonometric identity:
$$a \cos x + b \sin x = c \cos(x + \varphi) \tag{I}$$
where $c = \operatorname{sgn}(a) \sqrt{a^2 + b^2}$ and $\varphi = \arctan(-b/a)$. Using that identity, we can rewrite the result:
$$
\begin{align*}
v_{\text{net}}(t)
&= V_{\text{R}} \sin(\omega t) + V_{\text{L}} \cos(\omega t) \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \cos\biggl(\omega t + \arctan\biggl(-\frac{V_{\text{R}}}{V_{\text{L}}}\biggr)\biggr)
\end{align*}
$$
In order to compare the phase of $v_{\text{net}}(t)$ to that of $v_{\text{R}}(t) = \sin(\omega t)$, we have to convert the cosine into a sine. Fortunately there are some more trigonometric identities that we can use:
$$
\begin{align*}
\sin\biggl(\theta + \frac{\pi}{2}\biggr) &= \cos \theta \\
\tan\biggl(\theta + \frac{\pi}{2}\biggr) &= -\cot \theta
\end{align*} \tag{II}
$$
With that, we obtain the result:
$$
\begin{align*}
v_{\text{net}}(t)
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \cos\biggl(\omega t + \arctan\biggl(-\frac{V_{\text{R}}}{V_{\text{L}}}\biggr)\biggr) \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \sin\biggl(\omega t + \arctan\biggl(-\frac{V_{\text{R}}}{V_{\text{L}}}\biggr) + \frac{\pi}{2}\biggr) \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \sin\biggl(\omega t + \arctan \frac{V_{\text{L}}}{V_{\text{R}}}\biggr)
\end{align*}
$$
Now we can just read off the amplitude and phase of $v_{\text{net}}$:
$$
\begin{align*}
\text{(amplitude of $v_{\text{net}}$)} &= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \\
\text{(phase of $v_{\text{net}}$ relative to $v_{\text{R}}$)} &= \arctan \frac{V_{\text{L}}}{V_{\text{R}}}
\end{align*}
$$
Phasor approach
The phasor approach comes from a careful observation of Euler's formula:
$$\mathrm{e}^{\mathrm{i} x} = \cos x + \mathrm{i} \sin x$$
If we project out the imaginary parts of both sides, we obtain:
$$\operatorname{Im} \bigl(\mathrm{e}^{\mathrm{i} x}\bigr) = \sin x \tag{IIIa}$$
Geometrically, $\mathrm{e}^{\mathrm{i} x}$ is a 2D unit vector that rotates counterclockwise as $x$ increases. When $x=0$, the unit vector points to +x and it completes a revolution every $2 \pi$ radians. The $\operatorname{Im}(\ldots)$ operation projects out the y-coordinate, which equals $\sin x$. (The geometric interpretation equivalent to the complex plane interpretation, where we associate the real axis with the x-axis and the imaginary axis with the y-axis.)
We can also get a similar relationship for cosine:
$$\operatorname{Im} \bigl(\mathrm{i} \mathrm{e}^{\mathrm{i} x}\bigr) = \cos x \tag{IIIb}$$
Now, we can transform the voltages using (IIIa) and (IIIb):
$$
\begin{align*}
v_{\text{R}}(t) &= V_{\text{R}} \sin(\omega t) = V_{\text{R}} \operatorname{Im}\bigl(\mathrm{e}^{\mathrm{i} \omega t}\bigr) = \operatorname{Im}\bigl(V_{\text{R}} \mathrm{e}^{\mathrm{i} \omega t}\bigr) \\
v_{\text{L}}(t) &= V_{\text{L}} \cos(\omega t) = V_{\text{L}} \operatorname{Im}\bigl(\mathrm{i} \mathrm{e}^{\mathrm{i} \omega t}\bigr) = \operatorname{Im}\bigl(\mathrm{i} V_{\text{L}} \mathrm{e}^{\mathrm{i} \omega t}\bigr)
\end{align*}
$$
The expression inside $\operatorname{Im}\bigl(\cdots\bigr)$ is what is often called the "phasor". [Note: You can also define phasors using $\operatorname{Re}$ if your resistor had been $\propto \cos(\omega t)$.] We can give the phasors some names, for example:
$$
\begin{align*}
v_{\text{R}}(t) &= \operatorname{Im}\bigl(u_{\text{R}}(t)\bigr) &\text{where} && u_{\text{R}}(t) &= V_{\text{R}} \mathrm{e}^{\mathrm{i} \omega t} \\
v_{\text{L}}(t) &= \operatorname{Im}\bigl(u_{\text{L}}(t)\bigr) &\text{where} && u_{\text{L}}(t) &= \mathrm{i} V_{\text{L}} \mathrm{e}^{\mathrm{i} \omega t}
\end{align*}
$$
Geometrically, $u_{\text{R}}(t)$ and $u_{\text{R}}(t)$ are both vectors rotating counterclockwise with angular frequency $\omega$. When $t = 0$, the $u_{\text{R}}(t)$ points to +x, whereas $u_{\text{L}}(t)$ points to +y. The length of $u_{\text{R}}(t)$ is $V_{\text{R}}$, whereas the length of $u_{\text{L}}(t)$ is $V_{\text{L}}$.
To find the net voltage, we need to add the two voltages together as before:
$$
\begin{align*}
v_{\text{net}}(t)
&= v_{\text{R}}(t) + v_{\text{L}}(t) \\
&= \operatorname{Im}\bigl(V_{\text{R}} \mathrm{e}^{\mathrm{i} \omega t}\bigr) + \operatorname{Im}\bigl(\mathrm{i} V_{\text{L}} \mathrm{e}^{\mathrm{i} \omega t}\bigr) \\
&= \operatorname{Im}\bigl((V_{\text{R}} + \mathrm{i} V_{\text{L}}) \mathrm{e}^{\mathrm{i} \omega t}\bigr)
\end{align*}
$$
As you can see, this is equivalent to just adding the phasors:
$$
\begin{align*}
u_{\text{net}}(t)
&= u_{\text{R}}(t) + u_{\text{L}}(t) \\
&= (V_{\text{R}} + \mathrm{i} V_{\text{L}}) \mathrm{e}^{\mathrm{i} \omega t}
\end{align*}
$$
where we define
$$v_{\text{net}}(t) = \operatorname{Im}\bigl(u_{\text{net}}(t)\bigr)$$
To find the amplitude and phase of a phasor, we have to convert it into polar form. There is a handy identity for this:
$$z = |z| \mathrm{e}^{\mathrm{i} \arg(z)}$$
With that, we can then further rewrite the phasor as:
$$
\begin{align*}
u_{\text{net}}(t)
&= (V_{\text{R}} + \mathrm{i} V_{\text{L}}) \mathrm{e}^{\mathrm{i} \omega t} \\
&= |V_{\text{R}} + \mathrm{i} V_{\text{L}}| \mathrm{e}^{\mathrm{i} \arg(V_{\text{R}} + \mathrm{i} V_{\text{L}})} \mathrm{e}^{\mathrm{i} \omega t} \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \mathrm{e}^{\mathrm{i} \arctan(V_{\text{L}}/V_{\text{R}})} \mathrm{e}^{\mathrm{i} \omega t} \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \mathrm{e}^{\mathrm{i} (\omega t + \arctan(V_{\text{L}}/V_{\text{R}}))}
\end{align*}
$$
Geometrically, this phasor $u_{\text{net}}(t)$ is a vector of length $\sqrt{V_{\text{R}}^2 + V_{\text{L}}^2}$ rotating with angular frequency $\omega$. At $t = 0$, the phasor starts at an angle of $\arctan (V_{\text{L}} / V_{\text{R}})$ counterclockwise from the +x-axis.
Now we can convert this back using (IIIa):
$$
\begin{align*}
v_{\text{net}}(t)
&= \operatorname{Im}\bigl(u_{\text{net}}(t)\bigr) \\
&= \operatorname{Im}\biggl(\sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \mathrm{e}^{\mathrm{i} (\omega t + \arctan(V_{\text{L}}/V_{\text{R}}))}\biggr) \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \operatorname{Im}\biggl(\mathrm{e}^{\mathrm{i} (\omega t + \arctan(V_{\text{L}}/V_{\text{R}}))}\biggr) \\
&= \sqrt{V_{\text{R}}^2 + V_{\text{L}}^2} \sin\biggl(\omega t + \arctan \frac{V_{\text{L}}}{V_{\text{R}}}\biggr)
\end{align*}
$$
which as you can see, yields at the same result as the trigonometric approach.
The main benefit of phasors / complex numbers is that the algebra is often much easier: rules are simpler and there are overall fewer rules to memorize. Contrast that with trigonometric functions, where you have be familiar with this enormous list of trigonometric identities!