This question pertains to Equation (2.33) in Peskin and Schroeder: $$ \hat{\vec P}=-\int d^3\!x\,\hat\pi(\vec x)\vec\nabla\hat\phi(\vec x)=\int d^3\!p\,\vec p\,\hat a_{\vec p}^\dagger\,\hat a_{\vec p} $$
I know there are several other questions on Stackexchange about this (for example), and my question exceeds all of them. Firstly, Eq (2.33) is wrong because $\hat\phi$ and $\hat\pi$ don't commute, so the first part of the above should be: $$ \hat{\vec P}=-\frac{1}{2}\int d^3\!x\,\left[\hat\pi(\vec x)\vec\nabla\hat\phi(\vec x)+\vec\nabla\hat\phi(\vec x)\hat\pi(\vec x)\right] $$
However, to develop my question I will follow Eq (2.33) as it appears in the book. Given \begin{align} \hat\phi(\vec x)&=\int \dfrac{d^3\!p}{(2\pi)^3}\dfrac{1}{\sqrt{2\omega_{\vec p}}}\left( \hat a_{\vec p}+\hat a^\dagger_{-\vec p} \right)e^{i\vec p\cdot\vec x}\\ \hat\pi(\vec x)&=-i\int \dfrac{d^3\!p}{(2\pi)^3}\sqrt{\dfrac{\omega_{\vec p}}{2}}\left( \hat a_{\vec p}-\hat a^\dagger_{-\vec p} \right)e^{i\vec p\cdot\vec x} \end{align}
we obtain \begin{align} \hat{\vec P}&=i\int d^3\!x \int \dfrac{d^3\!p'}{(2\pi)^3}\sqrt{\dfrac{\omega_{\vec p'}}{2}}\left( \hat a_{\vec p'}-\hat a^\dagger_{-\vec p'} \right)e^{i\vec p'\cdot\vec x}\int \dfrac{d^3\!p''}{(2\pi)^3}(i\vec p'')\dfrac{1}{\sqrt{2\omega_{\vec p''}}}\left( \hat a_{\vec p''}+\hat a^\dagger_{-\vec p''} \right)e^{i\vec p''\cdot\vec x}\\ &=\frac{-1}{2}\iint\dfrac{d^3\!p'\,d^3\!p''}{(2\pi)^3}\sqrt{\frac{\omega_{\vec p'}}{\omega_{\vec p''}}}\left( \hat a_{\vec p'}-\hat a^\dagger_{-\vec p'} \right) \left( \hat a_{\vec p''}+\hat a^\dagger_{-\vec p''} \right)\vec p''\int \dfrac{d^3\!x}{(2\pi)^3}e^{i\vec x\cdot(\vec p'+\vec p'')}\\ &=\frac{-1}{2}\iint\dfrac{d^3\!p'\,d^3\!p''}{(2\pi)^3}\sqrt{\frac{\omega_{\vec p'}}{\omega_{\vec p''}}}\left( \hat a_{\vec p'}-\hat a^\dagger_{-\vec p'} \right) \left( \hat a_{\vec p''}+\hat a^\dagger_{-\vec p''} \right)\vec p''\delta^{(3)}(\vec p'+\vec p'') \\ &=\frac{-1}{2}\int\dfrac{d^3\!p'}{(2\pi)^3} \left( \hat a_{\vec p'}-\hat a^\dagger_{-\vec p'} \right) \left( \hat a_{-\vec p'}+\hat a^\dagger_{\vec p'} \right)(-\vec p') \end{align}
Drop the prime for concision in notation to get: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\left( \hat a_{\vec p}-\hat a^\dagger_{-\vec p} \right) \left( \hat a_{-\vec p}+\hat a^\dagger_{\vec p} \right)\\ &=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\left( \hat a_{\vec p}\hat a_{-\vec p}+\hat a_{\vec p}\hat a^\dagger_{\vec p} -\hat a^\dagger_{-\vec p}\hat a_{-\vec p}-\hat a^\dagger_{-\vec p}\hat a^\dagger_{\vec p} \right) \\ \end{align}
The antisymmetric part of the integrand ($f(-x)=-f(x)$) vanishes leaving: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \hat a_{\vec p}\hat a^\dagger_{\vec p} -\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\,\hat a^\dagger_{-\vec p}\hat a_{-\vec p} \\ \end{align}
Introduce $\vec p'=-\vec p$ and $-d^3\!p'=d^3\!p$ in the second term to get: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \hat a_{\vec p}\hat a^\dagger_{\vec p} -\frac{1}{2}\int^{-\infty}_\infty\dfrac{-d^3\!p'}{(2\pi)^3}\, (-\vec p')\,\hat a^\dagger_{\vec p'}\hat a_{\vec p'} \\ &=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \hat a_{\vec p}\hat a^\dagger_{\vec p} +\frac{1}{2}\int_{-\infty}^\infty\dfrac{d^3\!p'}{(2\pi)^3}\, \vec p'\,\hat a^\dagger_{\vec p'}\hat a_{\vec p'} \end{align}
Rename the integration variable in the second term $\vec p'=\vec p$ to get: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \left( \hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p} \right) \end{align}
To obtain the answer in Peskin (2.33), I will add into the integrand $$ 0=\hat a^\dagger_{\vec p}\hat a_{\vec p} -\hat a^\dagger_{\vec p}\hat a_{\vec p} $$
to obtain: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \left( \hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p} +\underbrace{\hat a^\dagger_{\vec p}\hat a_{\vec p} -\hat a^\dagger_{\vec p}\hat a_{\vec p}}_{0}\right)\\ &=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \left( [\hat a_{\vec p},\hat a^\dagger_{\vec p}]+2\hat a^\dagger_{\vec p}\hat a_{\vec p} \right)\\ \end{align}
I may have erred here since I have a scalar equal to an operator: $0=\hat a^\dagger\hat a-\hat a^\dagger\hat a $. If this is wrong, please explain. I think this ok, however, because I can just call that the zero operator: $\hat 0$. To continue, I will throw away the infinite term $[\hat a_{\vec p},\hat a^\dagger_{\vec p}]\propto\delta(0)$, and now I get: \begin{align} \hat{\vec P}&=\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \hat a^\dagger_{\vec p}\hat a_{\vec p} \\ \end{align}
This is the correct answer, per Peskin. However, I could have added the following into the integrand: $$ 0=\hat a_{\vec p}\hat a^\dagger_{\vec p} -\hat a_{\vec p}\hat a^\dagger_{\vec p} $$
to obtain: \begin{align} \hat{\vec P}&=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \left( \hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p}+\hat a_{\vec p}\hat a^\dagger_{\vec p} -\hat a_{\vec p}\hat a^\dagger_{\vec p} \right)\\ &=\frac{1}{2}\int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \left( 2\hat a_{\vec p}\hat a^\dagger_{\vec p}+[\hat a^\dagger_{\vec p},\hat a_{\vec p}]\right)\\ &\approx \int\dfrac{d^3\!p}{(2\pi)^3}\, \vec p\, \hat a_{\vec p}\hat a^\dagger_{\vec p} \end{align}
This is only equal to Peskin's Eq (2.33) if $\hat a_{\vec p}$ and $\hat a^\dagger_{\vec p}$ commute, but they do not. I assume the problem is the preferential ordering of the non-commuting $\hat\pi\nabla\hat\phi$ terms when I started and that a complete calculation will yield the correct answer. Before I do that, I'd like to get someone's comments. Why is one step at the end preferred over the other?
TLDR: Given: $$ 0=\hat a^\dagger_{\vec p}\hat a_{\vec p} -\hat a^\dagger_{\vec p}\hat a_{\vec p}\qquad\text{and}\qquad0=\hat a_{\vec p}\hat a^\dagger_{\vec p} -\hat a_{\vec p}\hat a^\dagger_{\vec p} $$
it follows that: \begin{align} \hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p}&=\hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p}\\ \underbrace{\hat a^\dagger_{\vec p}\hat a_{\vec p} -\hat a^\dagger_{\vec p}\hat a_{\vec p}}_{0} + \hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p} &=\hat a_{\vec p}\hat a^\dagger_{\vec p}+\hat a^\dagger_{\vec p}\hat a_{\vec p}+\underbrace{\hat a_{\vec p}\hat a^\dagger_{\vec p} -\hat a_{\vec p}\hat a^\dagger_{\vec p}}_{0}\\ [\hat a_{\vec p},\hat a^\dagger_{\vec p}]+2\hat a^\dagger_{\vec p}\hat a_{\vec p} &=2\hat a_{\vec p}\hat a^\dagger_{\vec p}+[\hat a^\dagger_{\vec p},\hat a_{\vec p}] \end{align}
These things don't seem equal to me, especially if we're throwing away the infinite part. What is going on here?