In Sakurai's quantum mechanics, the derivation of momentum operator and Hamlitonian operator is based on spatial translation and time translation as below,
- for spatial translation and momentum operator, we have $$\mathfrak{T}(d\pmb{x})|\alpha\rangle = \left(1 - \frac{i\pmb{p}\cdot d\pmb{x}}{\hbar}\right)|\alpha\rangle = \int{d\pmb{x}\ \mathfrak{T}(d\pmb{x})\ |\pmb{x}\rangle\langle\pmb{x}|\alpha\rangle} = \int{d\pmb{x}|\pmb{x}+d\pmb{x}\rangle\langle\pmb{x}|\alpha\rangle}$$ and if we change the variable $$\left(1 - \frac{i\pmb{p}\cdot d\pmb{x}}{\hbar}\right)|\alpha\rangle = \int{d\pmb{x}|\pmb{x}\rangle}\langle\pmb{x}-d\pmb{x}|\alpha\rangle = \int{d\pmb{x}|\pmb{x}\rangle}\left(\langle\pmb{x}|\alpha\rangle-d\pmb{x}\frac{\partial }{\partial \pmb{x}}\langle\pmb{x}|\alpha\rangle\right)$$ and then we get the momentum operator is, $$\pmb{p} = -i\hbar \frac{\partial}{\partial \pmb{x}}$$
- However, he derives Hamiltonian operator in a different manner. $$\mathfrak{U}(t + dt) - \mathfrak{U}(t)= \left(1 - \frac{iHdt}{\hbar}\right)\mathfrak{U}(t) - \mathfrak{U}(t) = -\frac{iHdt}{\hbar}\mathfrak{U}(t)$$ and then we get, $$\frac{\mathfrak{U}(t+dt)-\mathfrak{U}(t)}{dt} = \frac{d\mathfrak{U}(t)}{dt} = -i\frac{H}{\hbar}\mathfrak{U}(t)$$ and then we get Hamiltonian operator, $$H = i\hbar\frac{\partial}{\partial t}$$
- Here comes a problem, if we derive the momentum operator in similar manner as 2., we get $$\mathfrak{T}(\pmb{x} + d\pmb{x}) - \mathfrak{T}(\pmb{x})= \left(1 - \frac{i\pmb{p}\cdot d\pmb{x}}{\hbar}\right)\mathfrak{T}(\pmb{x}) - \mathfrak{T}(\pmb{x}) = -\frac{i\pmb{p}\cdot d\pmb{x}}{\hbar}\mathfrak{T}(\pmb{x})$$ and then we get, $$\frac{\mathfrak{T}(\pmb{x}+d\pmb{x})-\mathfrak{T}(\pmb{x})}{d\pmb{x}} = \frac{d\mathfrak{T}(\pmb{x})}{d\pmb{x}} = -i\frac{\pmb{p}}{\hbar}\mathfrak{T}(\pmb{x})$$ and then we get, $$\pmb{p} = i\hbar\frac{\partial}{\partial \pmb{x}}$$
There is a minus sign, and I don't know where is wrong , they should result in same result. Can someone tell me where is wrong?