Can we derive Ward identity from Noether current of a Lagrangian density, under the assumption that path integral measure is invariant?
Suppose that $\delta\psi(x) = \frac{d\hat{\psi}(x, \epsilon)}{d\epsilon}\bigr|_{\epsilon = 0}$ is a smooth variation such that $\psi(x) = \hat{\psi}(x, 0)$. In fact,
$$\hat{\psi}(x, \epsilon) = \psi(x)+\epsilon\delta \psi(x)\tag{1}$$
Then,
$$\begin{align} \delta\mathcal{L} &= \left(\frac{\partial \mathcal L}{\partial\psi} - \partial_\mu\frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\right)\delta\psi + \partial_\mu J^\mu,\quad J^\mu = \frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\delta\psi.\tag{2} \end{align}$$
For the action $\displaystyle S[\psi] = \int \mathcal{L}(\psi, \partial_{\mu}\psi)d^nx$, the variation of the path integral $$Z[\psi] = \int D[\psi]e^{\frac{i}{\hbar}S[\psi]}\tag{3}$$
is
$$\delta Z[\psi] = \frac{d}{d\epsilon}\biggr|_{e = 0}\biggr(\int D[\hat{\psi}]e^{\frac{i}{\hbar}S[\hat{\psi}]}\biggr) = \int \frac{d\mathcal{D}[\hat{\psi}]}{de}\biggr|_{\epsilon = 0}e^{\frac{i}{\hbar}S[\hat{\psi}]} + \frac{i}{\hbar}\int \mathcal{D}[\hat{\psi}]\frac{dS[\hat{\psi}]}{de}\biggr|_{\epsilon = 0}e^{\frac{i}{\hbar}S[\psi]}\tag{4}$$
Where
$$\frac{dS[\hat{\psi}]}{d\epsilon}\biggr|_{\epsilon = 0} = \int \left(\frac{\partial \mathcal L}{\partial\psi} - \partial_\mu\frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\right)\delta\psi + \partial_{\mu}\biggr(\frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\delta\psi\biggr)\biggr)d^nx\tag{5}$$
Under the assumption that Lagrangian is on-shell, this simplifies to
$$\frac{dS[\hat{\psi}]}{d\epsilon}\biggr|_{\epsilon = 0} = \int\partial_{\mu}\biggr(\frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\delta\psi\biggr)d^nx\tag{6}$$
From which we conclude that
$$\begin{align}\displaystyle\frac{i}{\hbar}\int \mathcal{D}[\hat{\psi}]\frac{dS[\hat{\psi}]}{d\epsilon}\biggr|_{\epsilon = 0}e^{\frac{i}{\hbar}S[\psi]} &= \frac{i}{\hbar}\int \mathcal{D}[\hat{\psi}]\biggr(\int\partial_{\mu}\bigr(\frac{\partial\mathcal L}{\partial(\partial_\mu\psi)}\delta\psi\bigr)d^nx\biggr)e^{\frac{i}{\hbar}S[\psi]}\\ &= \frac{i}{\hbar}\int \mathcal{D}[\hat{\psi}]\biggr(\int\partial_{\mu}J^{\mu}d^nx\biggr)e^{\frac{i}{\hbar}S[\psi]}\end{align}\tag{7}$$
Thus,
$$\delta Z[\psi] = \int \delta\mathcal{D}[\psi]e^{\frac{i}{\hbar}S[\psi]} + \frac{i}{\hbar}\int \mathcal{D}[\psi]\biggr(\int\partial_{\mu}J^{\mu}d^nx\biggr)e^{\frac{i}{\hbar}S[\psi]}\tag{8}$$
However, I'm not sure whether this is the right way to derive Ward identity, and whether I have a clear interpretation of my derivations.