The transformation rule from spherical to cartesian is
$ \rm dr=\frac{dx \ x+dy \ y+dz \ z}{r}$
$ \rm d\theta=\frac{dx \ x \ z+dy \ y \ z-dz \left(x^2+y^2\right)}{r^2 \sqrt{x^2+y^2}}$
$ \rm d\phi=\frac{dy \ x-dx \ y}{x^2+y^2}$
$ \rm r=\sqrt{x^2+y^2+z^2}$
$ \rm \theta =\arctan \left(z, \ \sqrt{x^2+y^2}\right)$
Schwarzschild in cartesian Droste $\rm \{t,x,y,z\}$ coordinates:
$$g_{\mu \nu}^\rm D=\left(
\begin{array}{cccc}
\rm 1-\frac{r_s}{r} & 0 & 0 & 0 \\
0 & \rm \frac{r_s \ x^2}{r^2 \ (r_s-r)}-1 & \rm \frac{r_s \ x \ y}{r^2 \ (r_s-r)} & \rm \frac{r_s \ x \ z}{r^2 \ (r_s-r)} \\
0 & \rm \frac{r_s \ x \ y}{r^2 \ (r_s-r)} & \rm \frac{r_s \ y^2}{r^2 \ (r_s-r)}-1 & \rm \frac{r_s \ y \ z}{r^2 \ (r_s-r)} \\
0 & \rm \frac{r_s \ x \ z}{r^2 \ (r_s-r)} & \rm \frac{r_s \ y \ z}{r^2 \ (r_s-r)} & \rm \frac{r_s \ z^2}{r^2 \ (r_s-r)}-1 \\
\end{array}
\right)$$
Schwarzschild in cartesian Raindrop $\rm \{\bar{\tau},x,y,z\}$ coordinates:
$$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ g_{\mu \nu}^\rm R=\left(
\begin{array}{cccc}
1-\frac{\rm r_s}{\rm r} & -\rm \frac{\sqrt{r_s} \ x}{\rm r^{3/2}} & -\rm
\frac{\sqrt{r_s} \ y}{\rm r^{3/2}} & -\rm \frac{\sqrt{r_s} \ z}{\rm r^{3/2}} \\
-\rm \frac{\sqrt{r_s} \ x}{\rm r^{3/2}} & -1 & 0 & 0 \\
-\rm \frac{\sqrt{r_s} \ y}{\rm r^{3/2}} & 0 & -1 & 0 \\
-\rm \frac{\sqrt{r_s} \ z}{\rm r^{3/2}} & 0 & 0 & -1 \\
\end{array}
\right)$$
Schwarzschild in cartesian Finkelstein $\rm \{{T},x,y,z\}$
coordinates:
$$\ \ \ \ \ \ \ g_{\mu \nu}^\rm F=\left(
\begin{array}{cccc}
\rm 1-\frac{r_s}{r}& -\rm \frac{r_s \ x}{\rm r^2} & -\rm \frac{r_s \ y}{\rm r^2} & -\rm \frac{r_s \ z}{\rm r^2} \\
-\rm \frac{r_s \ x}{\rm r^2} & -\rm \frac{r_s \ x^2}{\rm r^3}-1 & -\frac{\rm r_s \ x \ y}{\rm r^3} & -\frac{\rm r_s \ x \ z}{\rm r^3} \\
-\frac{\rm r_s \ y}{\rm r^2} & -\rm \frac{r_s \ x \ y}{\rm r^3} & -\rm \frac{r_s \ y^2}{\rm r^3}-1 & -\rm \frac{r_s \ y \ z}{\rm r^3} \\
-\rm \frac{r_s \ z}{\rm r^2} & -\frac{\rm r_s \ x \ z}{\rm r^3} & -\rm \frac{r_s \ y \ z }{\rm r^3} & -\rm \frac{r_s \ z^2}{\rm r^3}-1 \\
\end{array}
\right)$$
The Kerr metric gets pretty bloated in cartesian form, so I wouldn't recommend that, but the transformation rule from pseudospherical to cartesian and back can be found here at the bottom of the page.