Given an atomic transition with associated E-field $E(t) = E_{0}\cos(\omega_{0}t)e^{-t/\tau}$ where $\omega_{0}$ is the natural line frequency and $\tau$ is the decay constant of the simple harmonic oscillator. Find an expression for the line flux, that is $I(\omega)/I(\omega_{0})$.
I'm trying to do the following Fourier transform: $$ f(\omega)=\int^{\infty}_{-\infty}E_{0}\cos(\omega_{0}t)e^{-t/\tau}e^{-i\omega t}dt $$
I'm not really sure how to do this integral. I tried calculating it from $-\tau/2$ to $\tau/2$ but I get an answer with the sine of a complex number in the numerator that will not go away when I square it to find Intensity. Any help would be appreciated. Thanks