If you know the motion of a point A on a rigid body, with linear velocity $\vec{v}_A$ and angular velocity $\vec{\omega}$ then the formulas below will give you the linear momentum of the rigid body, and the angular momentum about point A. If the body is pivoting about A then $\vec{v}_A=0$, otherwise in the general case $\vec{v}_A \neq 0 $.
Linear momentum is given from the velocity of the center of mass, point C. Consider the c.m. located at $\vec{c}$ from point A.
$$ \vec{L} = m \vec{v}_C = m \left( \vec{v}_A - \vec{c}\times \vec{\omega} \right) $$
Now the angular momentum about the center of mass is $\vec{H}_C = I_C\,\vec{\omega}$ and so by transferring the motion be about A it becomes
$$ \begin{aligned} \vec{H}_A & = \vec{H}_C + \vec{c}\times\vec{L}
\\ & = I_C\,\vec{\omega} + m \vec{c}\times \left( \vec{v}_A - \vec{c}\times \vec{\omega} \right)
\\ & = \left( I_C\,\vec{\omega}-m (\vec{c}\times \vec{c}\times \vec{\omega}) \right) + \vec{c}\times m \vec{v}_A
\end{aligned}$$
In 6×6 matrix form (which I prefer) the above is
$$ \begin{bmatrix} \vec{L} \\ \vec{H}_A \end{bmatrix} =
\begin{bmatrix} m \bf{1} & -m [\vec{c}] \\
m [\vec{c}] & I_C-m [\vec{c}][\vec{c}]\end{bmatrix}
\begin{bmatrix} \vec{v}_A \\ \vec{\omega} \end{bmatrix}
$$
where $[\vec{c}]$ is the cross product matrix operator defined as
$$[\begin{pmatrix}x\\y\\z\end{pmatrix}] = \begin{pmatrix}0&-z&y\\z&0&-z\\-y&x&0\end{pmatrix}$$
This 6×6 matrix is the spatial inertia matrix, seen also in the Spatial equations of motion.
The component $I_A = I_C-m [\vec{c}][\vec{c}]$ represents the parallel axis theorem, if the rotation is not about the center of mass. For the planar case $\vec{c}=(c_x,c_y,0)$ the mass moment about A becomes $I_A = I_C + m \left(c_x^2+c_y^2\right)$. Try it yourself.
Just for kicks I will point out that the instant center of rotation P is located at $$\vec{p} = \frac{\vec{\omega}\times\vec{v}_A}{\vec{\omega}\cdot\vec{\omega}}$$ relative to A
Note that $\vec{v}_P=\vec{v}_A+\vec{\omega}\times\vec{p}$ yields a parallel condition $\vec{v}_P \; \parallel \; \vec{\omega}$