In my dynamics notes I have written the following: $$\frac{d\vec{p}_A}{dt}= \sum\vec{AC_i}\times m\vec{a_{ci}} + \sum \frac{dR_i}{dt}\left\{{I^{(i)}_{ci}}{\omega}^{(i)}_{ci}\right\}+\sum R\left\{{I^{(i)}_{ci}}\frac{d{\omega}^{(i)}_{ci}}{dt}\right\}$$ where $A$ is a random point, $C_i$ the center of mass of object $i$, $\left\{{I^{(i)}_{ci}}{\omega}^{(i)}_{ci}\right\}$ (an admittedly strange notation for) the resulting vector from $I_{i}\vec{\omega_{ci}}$ if $I_{i}$ is a diagonal matrix and $R_i$ a matrix that projects object $i$ to its principal axes of inertia. I am, however, incapable of finding my derivation of this formula.
Is this formula always correct? And also, -if correct- could $\frac{dR_i}{dt}$ be replace with $\vec{\omega_i}\times R_i$?