I recently read the following passage on page 137 in volume I of 'Quantum Fields and Strings: A course for Mathematicians' by Pierre Deligne and others (note that I am no mathematician and have not gotten too far into reading the book, so bear with me):
A physical system is usually described in terms of states and observable. In the Hamiltonian framework of classical mechanics, the states form a symplectic manifold $(M,\omega)$ and the observables are functions on $M$. The dynamics of a (time invariant) system is a one parameter group of symplectic diffeomorphisms; the generating function is the energy or Hamiltonian. The system is said to be free if $(M,\omega)$ is an affine symplectic space and the motion is by a one-parameter group of symplectic transformations. This general descriptions applies to any system that includes classical particles, fields, strings and other types of objects.
The last sentence, in particular, has really intrigued me. It implies a most general procedure for quantizing all systems encountered in physics. I haven't understood the part on symplectic diffeomorphisms or free systems. Here are my questions:
Given a constraint-free phase-space, equipped with the symplectic 2-form, we can construct a Hilbert space of states and a set of observables and start calculating expectation values and probability amplitudes. Since the passage says that this applies to point particles, fields and strings, I assume this is all there is to quantization of any system. Is this true?
What is the general procedure for such a construction, given $M$ and $\omega$?
For classical fields and strings what does this symplectic 2-form look like? (isn't it of infinite dimension?)
Also I assume for constrained systems like in loop quantum gravity, one needs to solve for the constraints and cast the system as a constraint-free before constructing the phase, am I correct?
I don't know what 'the one-parameter group of symplectic diffeomorphisms' are. How are the different from ordinary diffeomorphisms on a manifold? Since diffeomorphisms may be looked at as a tiny co-ordinate changes, are these diffeomorphisms canonical transformations? (is time or its equivalent the parameter mentioned above?)
What is meant by a 'free' system as given above?
By 'affine' I assume they mean that the connection on $M$ is flat and torsion free, what would this physically mean in the case of a one dimensional-oscillator or in the case of systems with strings and fields?
In systems that do not permit a Lagrangian description, how exactly do we define the cotangent bundle necessary for the conjugate momenta? If we can't, then how do we construct the symplectic 2-form? If we can't construct the symplectic 2-form, then how do we quantize the system?
I have asked a lot of long questions, so please answer as many as you can and link relevant articles.