I can only help with the equations of motion. The controls part you have to develop on your own.
Here are the transformation rules between two coordinate systems, in order to transform your equations of motion. See answer https://physics.stackexchange.com/a/80449/392 for details on how to transform from the center of mass C to another arbitrary point A.
$$ \begin{aligned}
\sum \vec{F} &= m \vec{a}_A - m \vec{c}\times \vec{\alpha} + m \vec{\omega}\times\vec{\omega}\times\vec{c} \\
\sum \vec{M}_A &= I_C \vec{\alpha} + m \vec{c} \times \vec{a}_A - m \vec{c} \times \vec{c} \times \vec{\alpha} +\vec{\omega} I_C \vec{\omega} + m \vec{c} \times \left( \vec{\omega} \times \vec{\omega} \times \vec{c} \right)
\end{aligned} $$