3

Which asymptotic bounds (upper and lower) are known for $s_n$ - the minimal number of generators of $S^n$ where $S$ is a nonabelian finite simple group?

Pablo
  • 11,229

1 Answers1

8

One has $$1 \leq s_n - \frac{\log(n)}{\log|S|} \leq 2r$$ based on an elementary argument in Remark 1.1 in [Moshe Jarden and Alexander Lubotzky, Random normal subgroups of free pro-finite groups, J. Group Theory 2 (1999) 213-224], where $r$ denotes the minimal number of generators of $S$. By the classification of finite simple groups, we know that $r = 2$.

Andreas Thom
  • 25,252