In Srednicki, we chose a function $f(\mathbf k)$ to make $d^3\mathbf k/f(\mathbf k)$ Lorentz invariant. The way to do this is to first start from a 4 dimensional measure and multiply it by a Dirac delta with a Lorentz invariant parameter. The one the book chose is: $$ d^4k\delta(k^2+m^2)\theta(k^0), $$ where $\theta(x)$ is the unit step function to pick the positive energy. It argues that if we integrate it with $k^0$: $$ \int_{-\infty}^{+\infty}dk^0d^3k\delta(k^2+m^2)\theta(k^0)=\frac{d^3k}{\frac{\partial(k^2+m^2)}{\partial k^0}\Big\vert_{k^2+m^2=0}}=\frac{d^3k}{2\sqrt{m^2+\mathbf k^2}} \equiv (2\pi)^3\widetilde{dk}. $$
Now, if we replace $m^2$ with an arbitrary number, $\delta(k^2+m^2)$ will still be Lorentz invariant. Does this mean $\widetilde{dk}$ can choose an arbitrary $m$ and still be Lorentz invariant? Why do we choose $m^2$ here (apart from the requirement from dimensional analysis)?