Given the Klein-Gordon equation $$\left(\Box +m^{2}\right)\phi(t,\mathbf{x})=0$$ it is possible to find a solution $\phi(t,\mathbf{x})$ by carrying out a Fourier decomposition of the scalar field $\phi$ at a given instant in time $t$, such that $$\phi(t,\mathbf{x})=\int\frac{d^{3}k}{(2\pi)^{3}}\tilde{\phi}\left(t,\mathbf{k}\right)e^{i\mathbf{k}\cdot\mathbf{x}}$$ where $\tilde{\phi}\left(t,\mathbf{k}\right)$ are the Fourier modes of the corresponding field $\phi(t,\mathbf{x})$.
From this we can calculate the required evolution of the Fourier modes $\tilde{\phi}\left(t,\mathbf{k}\right)$ such that at each instant in time $t$, $\phi(t,\mathbf{x})$ is a solution to the Klein-Gordon equation. This can be done, following on from the above, as follows: $$\left(\Box +m^{2}\right)\phi(t,\mathbf{x})=\left(\Box +m^{2}\right)\int\frac{d^{3}k}{(2\pi)^{3}}\tilde{\phi}\left(t,\mathbf{k}\right)e^{i\mathbf{k}\cdot\mathbf{x}}\qquad\qquad\qquad\qquad\qquad\qquad\;\;\,\\ =\int\frac{d^{3}k}{(2\pi)^{3}}\left[\left(\partial^{2}_{t}+\mathbf{k}^{2}+m^{2}\right)\tilde{\phi}\left(t,\mathbf{k}\right)\right]e^{i\mathbf{k}\cdot\mathbf{x}} =0\\ \Rightarrow \left(\partial^{2}_{t}+\mathbf{k}^{2}+m^{2}\right)\tilde{\phi}\left(t,\mathbf{k}\right)=0. \qquad\qquad\qquad$$
Question: This is all well and good, but why is it that in this case we only perform a Fourier decomposition of the spatial part only, whereas in other cases, such as for finding solutions for propagators (Green's functions), we perform a Fourier decomposition over all 4 spacetime coordinates? [e.g. $$G(x-y)=\int\frac{d^{4}x}{(2\pi)^{4}}\tilde{G}\left(t,\mathbf{k}\right)e^{ik\cdot x}$$ (where in this case $k\cdot x\equiv k_{\mu}x^{\mu}$).]
Is it simply because when we construct the appropriate QFT for a scalar field we do so in the Heisenberg picture, or is there something else to it?
Apologies if this is a really dumb question but it's really been bugging me for a while and I want to get the reasoning straight in my mind!