I'm trying to understand the significance of construction presented to me in field theory class. Let me first briefly describe it and then ask questions.
Given two solutions $\phi_1$, $\phi_2$ of the scalar wave equation $( \Box + m^2 ) \phi_i =0, $ $i=1,2$ one can define a conserved current, given by
$$ j[\phi_1, \phi_2] = \phi_1 \nabla \phi _2 - \phi_2 \nabla \phi_1, \tag{1} $$ $$ \nabla \cdot j =0 . \tag{2} $$
This allows one to constuct a symplectic form one the space of solutions. One chooses a Cauchy surface $\Sigma$ with future directed unit normal vector $N$ and defines
$$ \{ \phi_1 , \phi_2 \} = \int _{\Sigma} N \cdot j[\phi_1, \phi_2] d^3 x. \tag{3} $$
Furthermore, one can show that for any solution $\phi$ one can choose a function $\rho$ such that following representation holds:
$$ \hat{\phi}(k) = (2 \pi)^{3/2} \hat{D}(k) \hat{\rho}(k), \tag{4} $$
where hat denotes the Fourier transform and $D$ is Pauli-Jordan distribution, which satisfies
$$ \hat D (k) = \frac{i}{2 \pi} \mathrm{sgn} (k) \delta (k^2 -m^2).\tag{5} $$
Furthermore this representation is unique up to addition of a function with Fourier transform vanishing on the mass shell, or putting in a different way
$$ \phi _{\rho_1}=\phi_{\rho_2} \iff \exists \chi : \rho_1-\rho_2=(\Box + m^2) \chi. \tag{6}$$
One then constructs a quotient space, dividing space of all $\rho$ by space of all $(\Box +m^2) \chi$. On this space the symplectic form $ \sigma (\rho_1, \rho_2)=\{ \phi_{\rho_1}, \phi_{\rho_2} \} $ is well-defined and non-degenerate. It can also be rewritten as
$$ \sigma (\rho_1, \rho_2) = \int \rho_1(x) D(x-y) \rho_2(y) d^4 x d^4 y.\tag{7} $$
First question: are these symplectic forms ($\sigma(\cdot, \cdot)$ and $\{ \cdot, \cdot \}$) somehow related to Poisson bracket on phase space in Hamiltonian mechanics? I would expect something like that to be true, but for that one would need to somehow interpret $\rho$ as a function on some infinite-dimensional phase space. I am wondering if this can be done. And second, but closely related question: what is the intrepretation of these $\rho$ functions? Our lecturer told us that they should be thought of as degrees of freedom of the field but again, I don't quite see it. Some intuition here would be nice.