First let's add the first two spins $\mathbf{s}_1+\mathbf{s}_2=\mathbf{s}_{12}$, this can occur in two ways: $s_{12}=0$ and $s_{12}=1$. The general rule of momentum coupling is
$$
|s_1s_2:s_{12}m_{12}\rangle_{12}=\sum_{m_1m_2}( s_1m_1s_2m_2|s_{12}m_{12})|s_1m_1\rangle_1|s_2m_2\rangle_2.
$$
In the case of two spin-one-half particles it leads to familiar singlet and triplet states:
$$
{\textstyle\left|\frac12\frac12:00\right\rangle_{12}}=\frac{|\uparrow\rangle_1|\downarrow\rangle_2-|\downarrow\rangle_1|\uparrow\rangle_2}{\sqrt2},
$$
$$
{\textstyle\left|\frac12\frac12:11\right\rangle_{12}}=|\uparrow\rangle_1|\uparrow\rangle_2,\quad
{\textstyle\left|\frac12\frac12:10\right\rangle_{12}}=\frac{|\uparrow\rangle_1|\downarrow\rangle_2+|\downarrow\rangle_1|\uparrow\rangle_2}{\sqrt2},\quad{\textstyle\left|\frac12\frac12:1-1\right\rangle_{12}}=|\downarrow\rangle_1|\downarrow\rangle_2
$$
(in the following we will omit $\frac12\frac12:$ in these state vectors).
Now let's add the third spin $s_3=\frac12$ to $s_{12}=0,1$, the resulting total spin is $s$ and its projection is $m$. It occurs according to the rule
$$
|s_1s_2(s_{12})s_3:sm\rangle=\sum_{m_{12}m_3}(s_{12}m_{12}s_3m_3|sm)|s_{12}m_{12}\rangle_{12}|s_3m_3\rangle_3.
$$
The possible cases are:
A) $s_{12}=0$, $s=\frac12$, $m=\pm\frac12$:
$$
\textstyle\left|\frac12\frac12(0)\frac12:\frac12\frac12\right\rangle=\left|00\right\rangle_{12}\left|\uparrow\right\rangle_3.
$$
$$
\textstyle\left|\frac12\frac12(0)\frac12:\frac12-\frac12\right\rangle=\left|00\right\rangle_{12}\left|\downarrow\right\rangle_3.
$$
B) $s_{12}=1$, $s=\frac12$, $m=\pm\frac12$:
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac12\frac12\right\rangle}=\sqrt{\frac23}{\textstyle\left|11\right\rangle_{12}\left|\downarrow\right\rangle_3}-\sqrt{\frac13}{\textstyle\left|10\right\rangle_{12}\left|\uparrow\right\rangle_3},
$$
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac12-\frac12\right\rangle}=
\sqrt{\frac13}{\textstyle\left|10\right\rangle_{12}\left|\downarrow\right\rangle_3}-\sqrt{\frac23}{\textstyle\left|1-1\right\rangle_{12}\left|\uparrow\right\rangle_3},
$$
C) $s_{12}=1$, $s=\frac32$, $m=\pm\frac12,\pm\frac32$:
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac32\frac32\right\rangle}=
{\textstyle\left|11\right\rangle_{12}\left|\uparrow\right\rangle_3},
$$
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac32\frac12\right\rangle}=
\sqrt{\frac13}{\textstyle\left|11\right\rangle_{12}\left|\downarrow\right\rangle_3}+\sqrt{\frac23}{\textstyle\left|10\right\rangle_{12}\left|\uparrow\right\rangle_3},
$$
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac32-\frac12\right\rangle}=
\sqrt{\frac23}{\textstyle\left|10\right\rangle_{12}\left|\downarrow\right\rangle_3}+\sqrt{\frac13}{\textstyle\left|1-1\right\rangle_{12}\left|\uparrow\right\rangle_3},
$$
$$
{\textstyle\left|\frac12\frac12(1)\frac12:\frac32-\frac32\right\rangle}=
{\textstyle\left|1-1\right\rangle_{12}\left|\downarrow\right\rangle_3}.
$$