We know that two $SU(2)$ fundamentals have multiplication decompositions, such that $$ 2 \otimes 2= 1 \oplus 3.\tag{1}$$ In particular, the 3 has a vector representation of $SO(3)$. While the 1 is the trivial representation of $SU(2)$.
I hope to see the precise $SO(3)$ rotation from the two $SU(2)$ fundamental rotations.
So let us first write two $SU(2)$ fundamental objects in terms of an $SO(3)$ object. In particular, we can consider the following three:
$$ |1,1\rangle= \begin{pmatrix} 1\\ 0 \end{pmatrix}\begin{pmatrix} 1\\ 0 \end{pmatrix}= | \uparrow \uparrow \rangle,$$ $$|1,0\rangle ={1 \over \sqrt{2} } (\begin{pmatrix} 1\\ 0 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix})={1 \over \sqrt{2} }(| \uparrow \downarrow \rangle+ | \downarrow \uparrow \rangle) ,$$ $$|1,-1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}\begin{pmatrix} 0\\ 1 \end{pmatrix}= | \downarrow \downarrow \rangle. $$
where the $| \uparrow \rangle$ and $ \downarrow \rangle$ are in $SU(2)$ fundamentals. And we shothand $| \uparrow \uparrow \rangle \equiv | \uparrow \rangle |\uparrow \rangle $ and so on.
question: How do we rotate between $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, via two $SU(2)$ rotations acting on two $SU(2)$ fundamentals? Namely, that is, construct an $SO(3)$ rotation inside the two $SU(2)$ fundamental rotations? The $SU(2)$ has three generators, parametrized by $m_x,m_y,m_z$; how do we write down the generic $SO(3)$ rotations from two $SU(2)$ rotations?
Let us consider an example, an $SU(2)$ rotation $U$ acting on the $SU(2)$ fundamental $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ give rise to $$ U \begin{pmatrix} 1\\ 0 \end{pmatrix}= \begin{pmatrix} \cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2}) & (i m_x -m_y) \sin(\frac{\theta}{2}) \\ (i m_x +m_y) \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2})-{i m_z} \sin(\frac{\theta}{2}) \\ \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix}= \begin{pmatrix} \cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\ (i m_x +m_y) \sin(\frac{\theta}{2}) \end{pmatrix} \equiv\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2}) \begin{pmatrix} 1\\ 0 \end{pmatrix} + (i m_x +m_y) \sin(\frac{\theta}{2}) \begin{pmatrix} 0\\ 1 \end{pmatrix} $$
In other words, the $SU(2)$ rotation $U$ (with the $|\vec{m}|^2=1$) rotates $SU(2)$ fundamentals. Two $SU(2)$ rotations act as $$ UU|1,1\rangle = U \begin{pmatrix} 1\\ 0 \end{pmatrix}U \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\ (i m_x +m_y) \sin(\frac{\theta}{2}) \end{pmatrix}\begin{pmatrix} \cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\ (i m_x +m_y) \sin(\frac{\theta}{2}) \end{pmatrix} $$
Hint: Naively, we like to construct $$ L_{\pm} =L_{x} \pm i L_y, $$ such that $L_{\pm}$ is an operator out of two $SU(2)$ rotations acting on two $SU(2)$ fundamentals, such that it raises/lowers between $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$.
question 2: Is it plausible that two $SU(2)$ are impossible to perform such $SO(3)$ rotations, but we need two $U(2)$ rotations?