Relation between rotation matrix $\,\mathcal{R}(\boldsymbol{\theta})\,$, $2\times2$ hermitian traceless Pauli matrices $\,\boldsymbol{\sigma}\,$ and $3\times 3$ hermitian traceless matrices $\,\boldsymbol{\mathcal{S}}$
\begin{equation} \boxed{\:\:\:\mathbf{x}'\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\mathcal{S}}}\mathbf{x} \quad \boldsymbol{\Longleftrightarrow}\quad \left(\mathbf{x}'\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{- }\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma}/2}\left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{e}^{\boldsymbol{+ }\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma}/2}\vphantom{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:\:\:}
\tag{$\mathcal{R}$}\label{R}
\end{equation}
\begin{equation}
\boldsymbol{\sigma}\boldsymbol{=}\left(\sigma_1,\sigma_2,\sigma_3\right)\,, \quad
\sigma_1=
\begin{bmatrix}
0 & \!\!\hphantom{\boldsymbol{-}}1 \vphantom{\tfrac{a}{b}}\\
1 & \!\!\hphantom{\boldsymbol{-}}0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\quad
\sigma_2=
\begin{bmatrix}
0 & \!\!\boldsymbol{-} i \vphantom{\tfrac{a}{b}}\\
i & \!\!\hphantom{\boldsymbol{-}} 0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\quad
\sigma_3=
\begin{bmatrix}
1 & \!\!\hphantom{\boldsymbol{-}} 0 \vphantom{\frac{a}{b}}\\
0 & \!\!\boldsymbol{-} 1\vphantom{\frac{a}{b}}
\end{bmatrix}
\tag{$\boldsymbol{\sigma}$}\label{s}
\end{equation}
\begin{equation}
\boldsymbol{\mathcal{S}}\boldsymbol{=}\left(\mathcal{S}_1,\mathcal{S}_2,\mathcal{S}_3\right)\,, \quad \mathcal{S}_1\boldsymbol{=}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & i \\
0 & \!\!\!-\!i & 0
\end{bmatrix}
\quad \mathcal{S}_2\boldsymbol{=}
\begin{bmatrix}
0 & 0 & \!\!-\!i \\
0 & 0 & 0 \\
i & 0 & 0
\end{bmatrix}
\quad \mathcal{S}_3\boldsymbol{=}
\begin{bmatrix}
\:0 & i & 0 \\
\!\!-\!i & 0 & 0 \\
\:0 & 0 & 0
\end{bmatrix}
\tag{$\boldsymbol{\mathcal{S}}$}\label{S}
\end{equation}
$=================================================$
Any vector in $\mathbb{R}^3$ can be represented by a $2\times2$ hermitian traceless matrix and vice versa. So, there exists a bijection (one-to-one and onto correspondence) between $\mathbb{R}^3$ and the space of $2\times2$ hermitian traceless matrices, let it be $\mathbb{H}$ :
\begin{equation}
\mathbf{x}=(x_1,x_2,x_3)\in \mathbb{R}^3\;\boldsymbol{\longleftrightarrow} \; \mathrm X=
\begin{bmatrix}
x_3 & x_1 \boldsymbol{-}ix_2 \\
x_1 \boldsymbol{+}ix_2 & \boldsymbol{-}x_3
\end{bmatrix}
\in \mathbb{H}
\tag{01}\label{01}
\end{equation}
From the usual basis of $\mathbb{R}^3$
\begin{equation}
\mathbf{e}_{1}=\left(1,0,0\right),\quad \mathbf{e}_{2}=\left(0,1,0\right),\quad \mathbf{e}_{3}=\left(0,0,1\right)
\tag{02}\label{02}
\end{equation}
we construct a basis for $\mathbb{H}$
\begin{align}
\mathbf{e}_1 &= (1,0,0)\qquad \boldsymbol{\longleftrightarrow} \qquad \sigma_1=
\begin{bmatrix}
0 & \!\!\hphantom{\boldsymbol{-}}1 \vphantom{\tfrac{a}{b}}\\
1 & \!\!\hphantom{\boldsymbol{-}}0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\tag{03.1}\label{03.1}\\
\mathbf{e}_2 &= (0,1,0)\qquad \boldsymbol{\longleftrightarrow} \qquad \sigma_2=
\begin{bmatrix}
0 & \!\!\boldsymbol{-} i \vphantom{\tfrac{a}{b}}\\
i & \!\!\hphantom{\boldsymbol{-}} 0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\tag{03.2}\label{03.2}\\
\mathbf{e}_3 &= (0,0,1)\qquad \boldsymbol{\longleftrightarrow} \qquad \sigma_3=
\begin{bmatrix}
1 & \!\!\hphantom{\boldsymbol{-}} 0 \vphantom{\frac{a}{b}}\\
0 & \!\!\boldsymbol{-} 1\vphantom{\frac{a}{b}}
\end{bmatrix}
\tag{03.3}\label{03.3}
\end{align}
where $\:\boldsymbol{\sigma}\equiv(\sigma_{1},\sigma_{2},\sigma_{3})\:$ the Pauli matrices.
Suppose now that the vector $\:\mathbf{x}=(x_1,x_2,x_3)\:$ is rotated around an axis with unit vector $\:\mathbf{n}=(\rm n_1,n_2,n_3)$ through an angle $\theta$
\begin{equation}
\mathbf{x}'\boldsymbol{=} \mathcal{R}\,\mathbf{x}\boldsymbol{=}\cos\theta \;\mathbf{x}\boldsymbol{+}(1\boldsymbol{-}\cos\theta)\;(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\;\mathbf{n}\boldsymbol{+}\sin\theta\;(\mathbf{n}\boldsymbol{\times}\mathbf{x})
\tag{04}\label{04}
\end{equation}
The exponential expression of the rotation matrix $\:\mathcal{R}\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\mathcal{S}}}\:$ is derived in APPENDIX B.
Now, let to the vectors $\:\mathbf{x},\mathbf{x}^{\prime}\:$ correspond the matrices
\begin{align}
\mathrm X & \boldsymbol{\equiv} \mathbf{x}\boldsymbol{\cdot} \boldsymbol{\sigma} \hphantom{\boldsymbol{'}}\boldsymbol{=} x_1\sigma_1\boldsymbol{+}x_2\sigma_2\boldsymbol{+}x_3\sigma_3\boldsymbol{=}
\begin{bmatrix}
x_3 & x_1\boldsymbol{-}ix_2\\
x_1\boldsymbol{+}ix_2 & \boldsymbol{-}x_3
\end{bmatrix}
\tag{05.1}\label{05.1}\\
\mathrm X' & \boldsymbol{\equiv} \mathbf{x}' \boldsymbol{\cdot} \boldsymbol{\sigma} \boldsymbol{=} x'_1\sigma_1\boldsymbol{+}x'_2\sigma_2\boldsymbol{+}x'_3\sigma_3 \boldsymbol{=}
\begin{bmatrix}
x'_3 & x'_1\boldsymbol{-}ix'_2\\
x'_1\boldsymbol{+}ix'_2 & \boldsymbol{-}x'_3
\end{bmatrix}
\tag{05.2}\label{05.2}
\end{align}
Taking the inner product of \eqref{04} with $\boldsymbol{\sigma}$
\begin{equation}
(\mathbf{x}'\boldsymbol{\cdot}\boldsymbol{\sigma}) \boldsymbol{=} \cos\theta(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})\boldsymbol{+}(1\boldsymbol{-}\cos\theta)(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\boldsymbol{+}\sin\theta\bigl[(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\cdot}\boldsymbol{\sigma})\bigr]
\tag{07}\label{07}
\end{equation}
we have
\begin{equation}
\mathrm X' \boldsymbol{=} \cos\theta \;\mathrm X\boldsymbol{+}(1\boldsymbol{-}\cos\theta)(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\mathrm N\boldsymbol{+}\sin\theta\bigl[(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\cdot}\boldsymbol{\sigma})\bigr]
\tag{08}\label{08}
\end{equation}
where
\begin{equation}
\mathrm N \boldsymbol{\equiv} \mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma}\boldsymbol{=}
\begin{bmatrix}
\rm n_3 & \rm n_1\boldsymbol{-}i\rm n_2\\
\rm n_1\boldsymbol{+}i\rm n_2&\boldsymbol{-}\rm n_3
\end{bmatrix}
\tag{09}\label{09}
\end{equation}
Now
\begin{equation}
\bigl[(\mathbf{n}\times\mathbf{x})\boldsymbol{\cdot}\boldsymbol{\sigma}\bigr] \boldsymbol{=}\frac{(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})\boldsymbol{{-}}(\mathbf{x }\boldsymbol{\cdot}\boldsymbol{\sigma})(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})}{2i}\boldsymbol{=}i\frac{\rm XN\boldsymbol{-}NX}{2}
\tag{10}\label{10}
\end{equation}
and
\begin{equation}
(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\,I =\frac{(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})\boldsymbol{+}(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})}{2}=\frac{\rm NX\boldsymbol{+}XN}{2}
\tag{11}\label{11}
\end{equation}
For derivation of equations \eqref{10} and \eqref{11} see equations \eqref{A-05} and \eqref{A-06} in APPENDIX A.
Inserting expressions \eqref{10} and \eqref{11} in \eqref{08}
\begin{equation}
\mathrm X' \boldsymbol{=} \cos\theta \;\mathrm X\boldsymbol{+}\left(1\boldsymbol{-}\cos\theta\right)\left(\frac{\rm NX\boldsymbol{+}XN}{2}\right)\mathrm N\boldsymbol{+}i\sin\theta\left(\frac{\rm XN\boldsymbol{-}NX}{2}\right)
\tag{12}\label{12}
\end{equation}
Replacing
\begin{equation}
\cos\theta =\cos^2\frac{\theta}{2}-\sin^2\frac{\theta}{2}=1-2\sin^2\frac{\theta}{2}, \qquad \sin\theta=2 \sin \frac{\theta}{2}\cos\frac{\theta}{2}
\tag{13}\label{13}
\end{equation}
and using the property
\begin{equation}
\mathrm N^2=(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})^2=(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})=(\mathbf{n}\boldsymbol{\cdot}\mathbf{n})I=\left\|\mathbf{n}\right\|^2I=I
\tag{14}\label{14}
\end{equation}
we have
\begin{align}
\mathrm X'& \boldsymbol{=} \left(\cos^2\frac{\theta}{2}\right)\mathrm X+\left(\sin^2\frac{\theta}{2}\right)\mathrm N\mathrm X\mathrm N\boldsymbol{+}i \left(\sin\frac{\theta}{2} \cos\frac{\theta}{2}\right)(\mathrm X\mathrm N-\mathrm N\mathrm X)
\nonumber\\
&= \left(I\cos\frac{\theta}{2}-i\mathrm N\sin\frac{\theta}{2} \right)\mathrm X\cos\frac{\theta}{2}+i\left( I\cos\frac{\theta}{2}-i\mathrm N\sin\frac{\theta}{2} \right)\mathrm X\mathrm N\sin\frac{\theta}{2}
\nonumber\\
& = \left( I\cos\frac{\theta}{2}-i\mathrm N\sin\frac{\theta}{2} \right)\left(\mathrm X\cos\frac{\theta}{2}+i\mathrm X\mathrm N\sin\frac{\theta}{2} \right)
\nonumber\\
& =\left( I\cos\frac{\theta}{2}-i\mathrm N\sin\frac{\theta}{2}\right)\;\mathrm X\;\left( I\cos\frac{\theta}{2}+i\mathrm N\sin\frac{\theta}{2}\right)
\tag{15}\label{15}
\end{align}
so
\begin{equation}
\mathrm X'=\left[I\cos\frac{\theta}{2}-i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2} \right]\;\mathrm X\;\left[I\cos\frac{\theta}{2}+i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2} \right]
\tag{16}\label{16}
\end{equation}
or inserting back the definitions of $\;\mathrm X,\mathrm X'\;$
\begin{equation}
(\mathbf{x}'\boldsymbol{\cdot}\boldsymbol{\sigma})=\left[I\cos\frac{\theta}{2}-i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2} \right]\;(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})\;\left[I\cos\frac{\theta}{2}+i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2} \right]
\tag{17}\label{17}
\end{equation}
Equation \eqref{16} is written in compact form
\begin{equation}
\mathrm X'=U\;\mathrm X\;U^{\boldsymbol{*}}
\tag{18}\label{18}
\end{equation}
with
\begin{equation}
U\equiv I\cos\frac{\theta}{2}\boldsymbol{-}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}
\tag{19}\label{19}
\end{equation}
and hermitian conjugate
\begin{equation}
U^{\boldsymbol{*}}=I\cos\frac{\theta}{2}\boldsymbol{+}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}
\tag{20}\label{20}
\end{equation}
The exponential expression of the special unitary matrix $\:U\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{- }\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma}/2}\:$ is derived in APPENDIX C, see equation \eqref{C-05.1}.
$==========================================$
APPENDIX A
If to $\;\mathbf{x}\boldsymbol{=}(x_1,x_2,x_3),\mathbf{y}\boldsymbol{=}(y_1,y_2,y_3)\in \mathbb{R}^3\;$ there correspond respectively the $2\times2$ hermitian traceless matrices
\begin{equation}
\mathrm X\boldsymbol{=} \left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=} x_1\sigma_1\boldsymbol{+}x_2\sigma_2\boldsymbol{+}x_3\sigma_3\boldsymbol{=}
\begin{bmatrix}
x_3 & x_1 \boldsymbol{-}ix_2 \\
x_1 \boldsymbol{+}ix_2 & \boldsymbol{-}x_3
\end{bmatrix}
\tag{A-01}\label{A-01}
\end{equation}
and
\begin{equation}
\mathrm Y\boldsymbol{=} \left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}y_1\sigma_1\boldsymbol{+}y_2\sigma_2\boldsymbol{+}y_3\sigma_3\boldsymbol{=}
\begin{bmatrix}
y_3 & y_1 \boldsymbol{-}iy_2 \\
y_1 \boldsymbol{+}iy_2 & \boldsymbol{-}y_3
\end{bmatrix}
\tag{A-02}\label{A-02}
\end{equation}
then using the properties of the Pauli matrices $\:\sigma_{k}\:$ we have
\begin{equation}
\mathrm X\mathrm Y\boldsymbol{=} \left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}
\left(\mathbf{x}\boldsymbol{\cdot}\mathbf{y}\right)\mathrm I\boldsymbol{+} i\bigl[(\mathbf{x}\times\mathbf{y})\boldsymbol{\cdot}\boldsymbol{\sigma}\bigr]
\tag{A-03}\label{A-03}
\end{equation}
and so
\begin{equation}
\mathrm Y\mathrm X\boldsymbol{=} \left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}
\left(\mathbf{x}\boldsymbol{\cdot}\mathbf{y}\right)\mathrm I\boldsymbol{-} i\bigl[(\mathbf{x}\times\mathbf{y})\boldsymbol{\cdot}\boldsymbol{\sigma}\bigr]
\tag{A-04}\label{A-04}
\end{equation}
Subtracting and adding \eqref{A-03},\eqref{A-04} we have respectively
\begin{equation}
\left[\mathrm X,\mathrm Y\right]\boldsymbol{=}\mathrm X\mathrm Y\boldsymbol{-}\mathrm Y\mathrm X \boldsymbol{=} \left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{-}\left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}
2 i\bigl[(\mathbf{x}\times\mathbf{y})\boldsymbol{\cdot}\boldsymbol{\sigma}\bigr]
\tag{A-05}\label{A-05}
\end{equation}
and
\begin{equation}
\{\mathrm X,\mathrm Y\}\boldsymbol{=}\mathrm X\mathrm Y\boldsymbol{+}\mathrm Y\mathrm X \boldsymbol{=} \left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{+}\left(\mathbf{y}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\left(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma}\right)\boldsymbol{=}
2 \left(\mathbf{x}\boldsymbol{\cdot}\mathbf{y}\right)\mathrm I
\tag{A-06}\label{A-06}
\end{equation}
$==========================================$
APPENDIX B
In order to see the relation between the starting equation \eqref{04} of the answer and the starting equation (1) of the question we must express the rotation matrix $\;\mathcal{R}\;$ of equation \eqref{04} in exponential form. Although this form is given in many textbooks we'll derive it in the following for completeness.
In equation \eqref{04}, repeated here
\begin{equation}
\mathbf{x}'\boldsymbol{=} \mathcal{R}\,\mathbf{x}\boldsymbol{=}\cos\theta \;\mathbf{x}\boldsymbol{+}(1\boldsymbol{-}\cos\theta)\;(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\;\mathbf{n}\boldsymbol{+}\sin\theta\;(\mathbf{n}\boldsymbol{\times}\mathbf{x})
\tag{04}\label{repeat 04}
\end{equation}
the term $\:(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\;\mathbf{n}\:$ is the component of $\;\mathbf{x}\;$ parallel to $\;\mathbf{n}$. Given that $\:(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\times}\mathbf{n}\:$ is the component of $\;\mathbf{x}\;$ normal to $\;\mathbf{n}\;$
\begin{equation}
(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\;\mathbf{n}\boldsymbol{=}\mathbf{x}\boldsymbol{-}(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\times}\mathbf{n}=\mathbf{x}\boldsymbol{+}\mathbf{n}\boldsymbol{\times}(\mathbf{n}\boldsymbol{\times}\mathbf{x})
\tag{B-01}\label{B-01}
\end{equation}
Inserting this expression in \eqref{repeat 04}
\begin{equation}
\mathcal{R}\,\mathbf{x}\boldsymbol{=}\mathbf{x}\boldsymbol{+}(1\boldsymbol{-}\cos\theta)\;\left[\mathbf{n}\boldsymbol{\times}(\mathbf{n}\boldsymbol{\times}\mathbf{x})\right]\boldsymbol{+}\sin\theta\;(\mathbf{n}\boldsymbol{\times}\mathbf{x})
\tag{B-02}\label{B-02}
\end{equation}
If we define the following real anti-symmetric transformation
\begin{equation}
S\,\mathbf{x}\boldsymbol{=}\mathbf{n}\boldsymbol{\times}\mathbf{x}\boldsymbol{=}
\begin{bmatrix}
\hphantom{-}0 & -\rm n_3 & \hphantom{-}\rm n_2\hphantom{-}\vphantom{\frac12} \\
\hphantom{-} \rm n_3 & \hphantom{-} 0 & -\rm n_1\hphantom{-}\vphantom{\dfrac12} \\
-\rm n_2 & \hphantom{-} \rm n_1 & \hphantom{-}0\hphantom{-}\vphantom{\frac12}
\end{bmatrix}
\begin{bmatrix}
x_1\vphantom{\frac12} \\
x_2\vphantom{\dfrac12} \\
x_3\vphantom{\frac12}
\end{bmatrix}
\tag{B-03}\label{B-03}
\end{equation}
or formally
\begin{equation}
S\boldsymbol{\equiv}\mathbf{n}\boldsymbol{\times}\boldsymbol{=}
\begin{bmatrix}
\hphantom{-}0 & -\rm n_3 & \hphantom{-}\rm n_2\hphantom{-}\vphantom{\frac12} \\
\hphantom{-} \rm n_3 & \hphantom{-} 0 & -\rm n_1\hphantom{-}\vphantom{\dfrac12} \\
-\rm n_2 & \hphantom{-} \rm n_1 & \hphantom{-}0\hphantom{-}\vphantom{\frac12}
\end{bmatrix}
\tag{B-04}\label{B-04}
\end{equation}
then
\begin{equation}
\mathbf{n}\boldsymbol{\times}(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{=}S\left(S\,\mathbf{x}\right)\boldsymbol{=}S^2\mathbf{x}
\tag{B-05}\label{B-05}
\end{equation}
that is formally
\begin{equation}
S^2\boldsymbol{=}\mathbf{n}\boldsymbol{\times}\text{(}\mathbf{n}\boldsymbol{\times}\boldsymbol{=}
\begin{bmatrix}
\rm n^2_1-1 & \rm n_1\rm n_2 & \rm n_1\rm n_3\vphantom{\frac12} \\
\rm n_2\rm n_1 & \rm n^2_2-1 & \rm n_2\rm n_3\vphantom{\dfrac12} \\
\rm n_3\rm n_1 & \rm n_3\rm n_2 & \rm n^2_3-1\vphantom{\frac12}
\end{bmatrix}
\tag{B-06}\label{B-06}
\end{equation}
So from \eqref{B-02},\eqref{B-04} and \eqref{B-06}
\begin{equation}
\mathcal{R}\boldsymbol{=} I \boldsymbol{+}S\,\sin\theta\boldsymbol{-}S^2(\cos\theta\boldsymbol{-}1)
\tag{B-07}\label{B-07}
\end{equation}
Now, after proving the following properties of $\,S$
\begin{align}
S & \boldsymbol{=}\boldsymbol{-}S^3\boldsymbol{=}\boldsymbol{+}S^5\boldsymbol{=}\boldsymbol{-}S^7\boldsymbol{=}\cdots\boldsymbol{=}(\boldsymbol{-}1)^k S^{2k\boldsymbol{+}1}\,, \quad k \in \mathbb{N}
\tag{B-08.1}\label{B-08.1}\\
S^2 & \boldsymbol{=}\boldsymbol{-}S^4\boldsymbol{=}\boldsymbol{+}S^6\boldsymbol{=}\boldsymbol{-}S^8\boldsymbol{=}\cdots\boldsymbol{=}(\boldsymbol{-}1)^k S^{2k\boldsymbol{+}2}\,, \quad k \in \mathbb{N}
\tag{B-08.2}\label{B-08.2}
\end{align}
and given the infinite series expansions of the trigonometric functions
\begin{align}
\cos \theta & \boldsymbol{=} 1\boldsymbol{-}\frac{\theta^2}{2!}\boldsymbol{+}\frac{\theta^4}{4!}\boldsymbol{+}\cdots\boldsymbol{=} \sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k\theta^{2k}}{(2k)!}
\tag{B-09.1}\label{B-09.1}\\
\sin \theta & \boldsymbol{=} \theta\boldsymbol{-}\frac{\theta^3}{3!}\boldsymbol{+}\frac{\theta^5}{5!}\boldsymbol{+}\cdots\boldsymbol{=} \sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k\theta^{2k\boldsymbol{+}1}}{(2k\boldsymbol{+}1)!}
\tag{B-09.2}\label{B-09.2}
\end{align}
equation \eqref{B-07} yields
\begin{align}
\mathcal{R} & \boldsymbol{=} I \boldsymbol{+}S\,\sin\theta\boldsymbol{-}S^2(\cos\theta\boldsymbol{-}1)
\nonumber\\
& \boldsymbol{=} I \boldsymbol{+}S\left(\theta\boldsymbol{-}\frac{\theta^3}{3!} \boldsymbol{+}\frac{\theta^5}{5!} \boldsymbol{+}\cdots\right)\boldsymbol{-}S^{2}\left(\boldsymbol{-}\frac{\theta^2}{2!} \boldsymbol{+}\frac{\theta^4}{4!}\boldsymbol{-}\frac{\theta^6}{6!} \boldsymbol{+}\cdots\right)
\nonumber\\
& \boldsymbol{=}I\boldsymbol{+}(\theta S)\boldsymbol{+}\frac{(\theta S)^2}{2!}\boldsymbol{+}\frac{(\theta S)^3}{3!}\boldsymbol{+}\frac{(\theta S)^4}{4!}\boldsymbol{+}\frac{(\theta S)^5}{5!}\boldsymbol{+}\cdots
\nonumber\\
& \boldsymbol{=}\sum^{\boldsymbol{\infty}}_{k\boldsymbol{=}0}\frac{(\theta S)^{k}}{k!}\boldsymbol{=}\boldsymbol{e}^{\theta S}
\tag{B-10}\label{B-10}
\end{align}
that is
\begin{equation}
\mathcal{R}\boldsymbol{=}\boldsymbol{e}^{\theta S}
\tag{B-11}\label{B-11}
\end{equation}
Now defining the 3-vector of reals
\begin{equation}
\boldsymbol{\theta}\boldsymbol{=}\theta\,\mathbf{n}\boldsymbol{=}\left(\theta \rm n_1,\theta \rm n_2,\theta \rm n_3\right)
\tag{B-12}\label{B-12}
\end{equation}
and the 3-vector of real anti-symmetric matrices
\begin{equation}
\boldsymbol{\mathcal{K}}\boldsymbol{=}\left(\mathcal{K}_1,\mathcal{K}_2,\mathcal{K}_3\right)\,, \quad \mathcal{K}_1\boldsymbol{=}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & \!\!\!-\!1 \\
0 & 1 & 0
\end{bmatrix}
\quad \mathcal{K}_2\boldsymbol{=}
\begin{bmatrix}
\:0 & 0 & 1 \\
\:0 & 0 & 0 \\
\!-\!1 & 0 & 0
\end{bmatrix}
\quad \mathcal{K}_3\boldsymbol{=}
\begin{bmatrix}
0 & \!\!\!-\!1 & 0 \\
1 & 0 & 0 \\
0 &0 & 0
\end{bmatrix}
\tag{B-13}\label{B-13}
\end{equation}
we have the expression
\begin{equation}
\mathcal{R}\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\mathcal{K}}}
\tag{B-14}\label{B-14}
\end{equation}
To be in agreement with the exponent in equation (1) of the question we express the exponent in \eqref{B-14} in terms of the following $\;3\times 3\;$ hermitian traceless matrices
\begin{equation}
\boldsymbol{\mathcal{S}}\boldsymbol{=}\left(\mathcal{S}_1,\mathcal{S}_2,\mathcal{S}_3\right)\,, \quad \mathcal{S}_1\boldsymbol{=}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & i \\
0 & \!\!\!-\!i & 0
\end{bmatrix}
\quad \mathcal{S}_2\boldsymbol{=}
\begin{bmatrix}
0 & 0 & \!\!-\!i \\
0 & 0 & 0 \\
i & 0 & 0
\end{bmatrix}
\quad \mathcal{S}_3\boldsymbol{=}
\begin{bmatrix}
\:0 & i & 0 \\
\!\!-\!i & 0 & 0 \\
\:0 & 0 & 0
\end{bmatrix}
\tag{B-15}\label{B-15}
\end{equation}
so that
\begin{equation}
\mathcal{R}\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\mathcal{S}}}
\tag{B-16}\label{B-16}
\end{equation}
$==========================================$
APPENDIX C
The special unitary matrix of equation \eqref{19}, repeated here for convenience
\begin{equation}
U\boldsymbol{\equiv }I\cos\frac{\theta}{2}\boldsymbol{-}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}\boldsymbol{=}I\cos\frac{\theta}{2}\boldsymbol{-}i\mathrm N\sin\frac{\theta}{2}
\tag{19}\label{repeat19}
\end{equation}
could be expressed in exponential form.
From equation \eqref{14}
\begin{equation}
\mathrm N^2\boldsymbol{=}(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})^2\boldsymbol{=}I
\tag{14}\label{repeat14}
\end{equation}
we have
\begin{equation}
\mathrm N^{2k}\boldsymbol{=}(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})^{2k}\boldsymbol{=}I \quad \text{and} \quad \mathrm N^{2k\boldsymbol{+}1}\boldsymbol{=}(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})^{2k\boldsymbol{+}1}\boldsymbol{=}\mathrm N
\tag{C-01}\label{C-01}
\end{equation}
Using the infinite series expansions of the trigonometric functions \eqref{B-09.1} and \eqref{B-09.2} for $\;\left(\theta/2\right)$
\begin{align}
\cos \left(\frac{\theta}{2}\right) & \boldsymbol{=} \sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k}{(2k)!}\left(\frac{\theta}{2}\right)^{2k}
\tag{C-02.1}\label{C-02.1}\\
\sin\left(\frac{\theta}{2}\right) & \boldsymbol{=} \sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k}{(2k\boldsymbol{+}1)!}\left(\frac{\theta}{2}\right)^{2k\boldsymbol{+}1}
\tag{C-02.2}\label{C-02.2}
\end{align}
we have
\begin{align}
U & \boldsymbol{=}I\cos\frac{\theta}{2}\boldsymbol{-}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}\boldsymbol{=}\mathrm N^{2}\cos\frac{\theta}{2}\boldsymbol{-}i\mathrm N\sin\frac{\theta}{2}
\nonumber\\
& \boldsymbol{=} \mathrm N^{2}\Biggl[\sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k}{(2k)!}\left(\frac{\theta}{2}\right)^{2k}\Biggr]\boldsymbol{-}i\mathrm N\Biggl[\sum^{\infty}_{k=0}\frac{(\boldsymbol{-}1)^k}{(2k\boldsymbol{+}1)!}\left(\frac{\theta}{2}\right)^{2k\boldsymbol{+}1} \Biggr]
\nonumber\\
&\boldsymbol{=} \Biggl[\sum^{\infty}_{k=0}\frac{1}{(2k)!}\left(\boldsymbol{-}i\frac{\theta\mathrm N}{2}\right)^{2k}\Biggr]\boldsymbol{+}\Biggl[\sum^{\infty}_{k=0}\frac{1}{(2k\boldsymbol{+}1)!}\left(\boldsymbol{-}i\frac{\theta\mathrm N}{2}\right)^{2k\boldsymbol{+}1} \Biggr]
\nonumber\\
& \boldsymbol{=}\sum^{\boldsymbol{\infty}}_{m\boldsymbol{=}0}\frac{1}{m!}\left(\boldsymbol{-}i\frac{\theta\mathrm N}{2}\right)^{m}\boldsymbol{=}\exp\left(\boldsymbol{-}i\frac{\theta\mathrm N}{2}\right)
\tag{C-03}\label{C-03}
\end{align}
From definitions \eqref{09} and \eqref{B-12}
\begin{equation}
\theta\mathrm N\boldsymbol{=}\theta(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\boldsymbol{=}(\theta\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})=(\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma})
\tag{C-04}\label{C-04}
\end{equation}
so
\begin{align}
U &\boldsymbol{=}I\cos\frac{\theta}{2}\boldsymbol{-}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{- }\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma}/2}
\tag{C-05.1}\label{C-05.1}\\
U^{\boldsymbol{*}}&\boldsymbol{=}I\cos\frac{\theta}{2}\boldsymbol{+}i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}\boldsymbol{=}\boldsymbol{e}^{\boldsymbol{+ }\boldsymbol{i}\,\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\sigma}/2}
\tag{C-05.2}\label{C-05.2}
\end{align}
$==========================================$