My job is to prove: $$\exp(i\theta \vec{v} \cdot \vec{ \sigma })=\cos(\theta)I+i\sin(\theta)\vec{v} \cdot \vec{ \sigma }$$
where $\theta \in \mathbb{R}$ and $\vec{v} \cdot \vec{ \sigma }=\Sigma^3_{i=1}v_i\sigma_i$ such that $\sigma_i$ are the Pauli matrices, and $\vec{v}$ is a three dimensional real vector.
My attempt:
$$\vec{v} \cdot \vec{ \sigma }=v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} +v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} +v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} v_3 & v_1-iv_2 \\ v_1+iv_2 & -v_3 \end{bmatrix} \tag{1} $$
This is an Hermitian matrix as it is the sum of 3 Hermitian matrices because $v_1,v_2,v_3 \in \mathbb{R}$. Here's my plan: as $\vec{v} \cdot \vec{ \sigma }$ is Hermitian, then it is also diagonalizable, which by the spectral decomposition:
$$\vec{v} \cdot \vec{ \sigma }=\Sigma_i\lambda_i|i\rangle\langle i|\\ \exp(i\theta \vec{v} \cdot \vec{ \sigma })=\Sigma_i\exp(i\theta\lambda_i)|i\rangle\langle i|$$
where $\lambda_i$ are the eigenvalues of $\vec{v} \cdot \vec{ \sigma }$ and $|i\rangle\langle i|$ the outer product of its eigenvectors with themselves. Then work out from there. But from $(1)$ I get to:
$$ \exp(i\theta \vec{v} \cdot \vec{ \sigma })=e^{i\theta||\vec{v}||} \begin{bmatrix} \frac{iv_2-v_1}{v_3-||\vec{v}||} \\ 1 \end{bmatrix} \begin{bmatrix} \frac{iv_2-v_1}{v_3-||\vec{v}||} & 1 \end{bmatrix} +e^{-i\theta||\vec{v}||} \begin{bmatrix} \frac{iv_2-v_1}{v_3+||\vec{v}||} \\ 1 \end{bmatrix} \begin{bmatrix} \frac{iv_2-v_1}{v_3+||\vec{v}||} & 1 \end{bmatrix} $$
But this seems a bit excessive, and I don't know where I am mistaken, any help is appreciated.
Notes:
- This is the exercise 2.35 from Quantum Computation and Quantum Information by Nielsen and Chuang;
- I have seen this solution but I was unable to follow their reasoning. Also, could someone tell me which fundamentals I am missing in order to understand this solution?
$$(\overrightarrow{v}\cdot\overrightarrow{\sigma})^{2n}=I$$
Where n is an integer and I the identity.
– R. Rankin Jan 30 '19 at 21:43