I've been dealing with annihilation operator recently where you can see related information
Time derivative of the state vector as expressed in abstract Hilbert space vs. as a wavefunction
How to get the time derivative of an expectation value in quantum mechanics?
and
- "Creation and annihilation operators", Wikipedia
for definition.
Correction made by Valter Moretti and J.G.'s answer, there is no contradiction.
$$ \begin{align} i \hbar \frac{\mathrm{d}}{\mathrm{d}t} \left(a \left| \psi(n,t) \right\rangle \right) & ~=~ i \hbar \frac{\mathrm{d}}{\mathrm{d}t} \left(\sqrt{n} \left| \psi(n-1,t) \right\rangle \right) \\[5px] & ~=~ H \sqrt{n} \left| \psi(n-1,t) \right\rangle \\[5px] & ~=~ E_{n-1}\sqrt{n} \left| \psi(n-1,t) \right\rangle \end{align} \,.$$
and \begin{align} i\hbar\frac{d}{dt}(a|\psi(n,t)\rangle) & =i\hbar\frac{d}{dt}(a)|\psi(n,t)\rangle+a(i\hbar\frac{d}{dt}|\psi(n,t)\rangle) \\[5px] & =i\hbar \cdot iwa|\psi(n,t)\rangle+a(H|\psi(n,t)\rangle) \\[5px] & =-\hbar w a|\psi(n,t)\rangle+a(E_n|\psi(n,t)\rangle) \\[5px] & =(E_n-\hbar w)a|\psi(n,t)\rangle\\[5px] & =E_{n-1} a|\psi(n,t)\rangle\\[5px] & =E_{n-1} \sqrt{n}|\psi(n-1,t)\rangle \end{align}
Notice $\frac{d}{dt}(a)\neq 0$ despite the fact that $a$ in matrix represtation is a constant matrix.