As pointed out in earlier answers, Doppler effect and relativistic effects are independent.
There are several ways to show that, one way is to consider transverse velocity. For instance the case of particles moving at relativistic speed, for instance in a ring-shaped particle accelerator. Relative to the center of the ring that is a transverse velocity. The relativistic velocity gives rise to a measurable time dilation effect for the particles. Due to the time dilation effect there is a frequency shift of any radiation that is emitted or absorbed. That is relativistic effect, not Doppler effect.
However, it's interesting to note that mathematically there are parallels in the descriptions of the two.
In the 1880's a german called 'Waldemar Voigt' published an article in which he presented some work on how to represent Doppler effect mathematically. Specifically, Voigt discussed how solutions to general general wave equation transform from one frame of reference to another.
General wave equation in one dimension:
$$
\frac{\partial^2 \phi }{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \phi}{\partial t^2}
$$
(u = propagation speed of the wave)
As part of his 'Reflections on Relativity' Kevin Brown writes about these explorations by Voigt in an article titled The relativity of light.
Voigt arrived at transformations very close to the Lorentz transformations, and Kevin Brown discusses that if Voigt would have aimed for full symmetry he would readily have arrived at the Lorentz transformations. Again, this was in the course of a general exploration of Doppler effect.
Years later, in the 1890's, Lorentz arrived at the Lorentz transformations in the course of exploring properties of Maxwell's theory of electricity and magnetism.
As we know, the Lorentz transformations are at the heart of special relativity.
That makes one wonder:
how did it come about that Lorentz arrived at the Lorentz transformations in the course of working on deeper understanding of how Maxwell's equations describe the physical world? Maxwell's theory of electricity and magnetism was formulated decades before the introduction of Einstein's Special Relativity.
Back when Maxwell had introduced his theory of electricity and magnetism Maxwell had noticed that his equations implied that the electromagnetic field would have the following capability: propagating undulations of the electromagnetic field. That is: propagating waves. (Maxwell's theory is so powerful that Maxwell had a way of calculating the speed of the electromagnetic waves from first principles, finding that this calculated speed was the same as the know speed of light, to within the measuring accuracy available. That is: Maxwell's equations imply that light is electromagnetic waves.)
The Lorentz transformations from Maxwell's equations:
If you put two and two together it is apparent that the wave propagation is the crucial element. The fact that Maxwell's equations give rise to the Lorentz transformations relates to the fact that there are solutions to Maxwell's equations that describe propagating waves.