$\newcommand{\bl}[1]{\boldsymbol{#1}}
\newcommand{\e}{\bl=}
\newcommand{\p}{\bl+}
\newcommand{\m}{\bl-}
\newcommand{\mb}[1]{\mathbf {#1}}
\newcommand{\mc}[1]{\mathcal {#1}}
\newcommand{\mr}[1]{\mathrm {#1}}
\newcommand{\gr}{\bl>}
\newcommand{\les}{\bl<}
\newcommand{\greq}{\bl\ge}
\newcommand{\leseq}{\bl\le}
\newcommand{\plr}[1]{\left(#1\right)}
\newcommand{\blr}[1]{\left[#1\right]}
\newcommand{\vlr}[1]{\left\vert#1\right\vert}
\newcommand{\Vlr}[1]{\left\Vert#1\right\Vert}
\newcommand{\lara}[1]{\left\langle#1\right\rangle}
\newcommand{\lav}[1]{\left\langle#1\right|}
\newcommand{\vra}[1]{\left|#1\right\rangle}
\newcommand{\lavra}[2]{\left\langle#1\right|\left#2\right\rangle}
\newcommand{\lavvra}[3]{\left\langle#1\right|#2\left|#3\right\rangle}
\newcommand{\vp}{\vphantom{\dfrac{a}{b}}}
\newcommand{\Vp}[1]{\vphantom{#1}}
\newcommand{\hp}[1]{\hphantom{#1}}
\newcommand{\x}{\bl\times}
\newcommand{\ox}{\bl\otimes}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\qqlraqq}{\qquad\bl{-\!\!\!-\!\!\!-\!\!\!\longrightarrow}\qquad}
\newcommand{\qqLraqq}{\qquad\boldsymbol{\e\!\e\!\e\!\e\!\Longrightarrow}\qquad}
\newcommand{\tl}[1]{\tag{#1}\label{#1}}
\newcommand{\hebl}{\bl{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}}$
$\texttt{C O N T E N T S}$
$\bl\S\texttt{ A. Lorentz boost and transformation of velocity 3-vectors}$
$\bl\S\texttt{ B. Aberration of light}$
$\bl\S\texttt{ C. Relativistic Doppler Shift}$
$\bl\S\texttt{ D. Intensity changes in the Doppler effect}$
$\hebl$
$\texttt{R E F E R E N C E S}$
$\texttt{Reference-01:}$ Intensity changes in the Doppler effect, M.H. Johnson and E.Teller.
$\texttt{Reference-02:}$ My answer in About de Broglie relations, what exactly is E? Its energy of what?.
$\texttt{Reference-03:}$ My answer in Deriving relativistic Doppler shift in terms of wavelength.
$\texttt{Reference-04:}$'Relativity-Special, General, and Cosmological' by W.Rindler, 2nd Ed.
$\texttt{Reference-05:}$'Modern Classical Physics. Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics' by Kip S.Thorne and Roger D. Blandford, 2017.
$\texttt{Reference-06:}$High Energy Astrophysics - Lecture 3, Frank Rieger.
$\texttt{Reference-07:}$Phase space volume and relativity.
$\hebl$
$\bl\S $ A. Lorentz boost and transformation of velocity 3-vectors
The $\,1\p 1\m$Lorentz boost transformation with velocity $\:\bl\upsilon\e\upsilon\,\mb e_x \:$ along the common $x'\m,x\m$axis of two inertial frames $\:\mr S',\mr S\:$ expressed in differential form is
\begin{align}
\mr dx &\e\gamma\plr{\mr dx'\p\upsilon\mr dt'} \qquad \plr{\m c\les\upsilon\les c}
\tl{A-01a}\\
\mr dy &\e\mr dy'
\tl{A-01b}\\
\mr dz &\e\mr dz'
\tl{A-01c}\\
\mr dt &\e\gamma\plr{\mr dt'\p\dfrac{\upsilon\mr dx'}{c^2}}
\tl{A-01d}\\
\gamma &\e\plr{1\boldsymbol{-}\dfrac{\upsilon^2}{c^2}}^{\m\frac12}
\tl{A-01e} \\
\beta &\e\dfrac{\,\upsilon\,}{c} \qquad \plr{\m 1\les\beta\les 1}
\tl{A-01f}
\end{align}
see Figure-01.
If a particle is moving with respect to the frame $\:\mr S'\:$ with velocity
\begin{equation}
\begin{split}
&\mb u'\e\plr{\mr u_x',\mr u_y',\mr u_z'}\e\mr u'\plr{\mr n_x',\mr n_y',\mr n_z'}\e\mr u'\mb n'\\
&\m c\leseq\mr u'\leseq c \qquad \Vlr{\mb n'}\e 1 \\
\end{split}
\tl{A-02}
\end{equation}
then to find its velocity with respect to the frame $\:\mr S\:$
\begin{equation}
\begin{split}
&\mb u\e\plr{\mr u_x,\mr u_y,\mr u_z}\e\mr u\,\plr{\mr n_x,\mr n_y,\mr n_z}\e\mr u\,\mb n\\
&\m c\leseq\mr u\leseq c \qquad \Vlr{\mb n}\e 1 \\
\end{split}
\tl{A-03}
\end{equation}
we divide side-by-side each one of equations \eqref{A-01a},\eqref{A-01b},\eqref{A-01c} by equation \eqref{A-01d}, and setting
\begin{equation}
\begin{split}
\mb u'&\e\plr{\mr u_x',\mr u_y',\mr u_z'}\e\plr{\dfrac{\mr dx'}{\mr dt'}\:,\:\dfrac{\mr dy'}{\mr dt'}\:,\:\dfrac{\mr dz'}{\mr dt'}}\\
\mb u &\e\plr{\mr u_x,\mr u_y,\mr u_z}\e\plr{\dfrac{\mr dx}{\mr dt}\:,\:\dfrac{\mr dy}{\mr dt}\:,\:\dfrac{\mr dz}{\mr dt}}\\
\end{split}
\tl{A-04}
\end{equation}
we end up with the following Lorentz transformation of the velocity 3-vectors
\begin{equation}
\mr u_x\e\dfrac{\mr u_x'\p\upsilon}{1\p\dfrac{\upsilon\mr u_x'}{c^2}}\:,\quad \mr u_y\e\dfrac{\mr u_y'}{\gamma\plr{1\p\dfrac{\upsilon\mr u_x'}{c^2}}}\:,\quad \mr u_z\e\dfrac{\mr u_z'}{\gamma\plr{1\p\dfrac{\upsilon\mr u_x'}{c^2}}}
\tl{A-05}
\end{equation}
essentially the relativistic addition of the velocities $\:\mb u'\:$ and $\:\bl\upsilon$.
$\bl\S $ B. Aberration of light
Consider that a light source at rest in frame $\:\mr S'\:$ is emitting a photon in the direction $\:\mb n'\:$ on the $x'y'\m$plane by an angle $\:\theta'\:$ with respect to $\:\bl\upsilon$. The velocity of the photon is
\begin{equation}
\mb u'\e c\,\mb n'\e c\plr{\cos\theta',\sin\theta',0}\e\plr{\mr u_x',\mr u_y',\mr u_z'}
\tl{B-01}
\end{equation}
Inserting its components in equations \eqref{A-05} we find the velocity of the photon with respect to the frame $\:\mr S$
\begin{equation}
\mb u\e c\,\mb n\:\e c\plr{\cos\theta\:,\sin\theta\:,0}\e\plr{\mr u_x,\mr u_y,\mr u_z}
\tl{B-02}
\end{equation}
where
\begin{equation}
\boxed{\:\:\cos\theta\e\dfrac{\cos\theta'\p\beta}{1\p\beta\cos\theta'}\:, \quad \sin\theta\e\dfrac{\sin\theta'}{\gamma\plr{1\p\beta\cos\theta'}}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}\quad \texttt{(Aberration 1)}
\tl{B-03}
\end{equation}
that is the equation for the aberration of light.
Note that due to the trigonometric identity
\begin{equation}
\tan\plr{\dfrac{\,\theta\,}{2}}\e\dfrac{\sin\theta}{1\p \cos\theta}
\tl{B-04}
\end{equation}
equations \eqref{B-03} yield
\begin{equation}
\tan\plr{\dfrac{\,\theta\,}{2}}\e\dfrac{\sin\theta}{1\p \cos\theta}\e \dfrac{1}{\gamma\plr{1\p \beta}}\dfrac{\sin\theta'}{1\p \cos\theta'}\e\sqrt{\dfrac{1\m \beta}{1\p\beta}}\tan\plr{\dfrac{\,\theta'}{2}}
\nonumber
\end{equation}
that is the more simple equation
\begin{equation}
\boxed{\:\:\tan\plr{\dfrac{\,\theta\,}{2}}\e \plr{\dfrac{c\m\upsilon}{c\p\upsilon}}^{\frac12}\tan\plr{\dfrac{\,\theta'}{2}}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}\quad\texttt{(Aberration 2)}
\tl{B-05}
\end{equation}
We meet above equation as (4.9) in $\texttt{Reference-04}$.
$\bl\S $ C. Relativistic Doppler Shift
According to Louis de Broglie to a massive particle moving with $''$subluminal$''$ velocity $\:\mb u\e\mr u\,\mb n, \vert\mr u\vert\les c \:$, there corresponds a $''$superluminal$''$ plane phase wave, see $\texttt{Reference-02}$.
A subluminal particle has time-like energy-momentum Lorentz 4-vector
\begin{equation}
\mb P\e\plr{\gamma_{\mr u}\,m\,c, \gamma_{\mr u}\,m\,\mb u}\e\plr{\dfrac{E}{c},\mb p }
\tl{C-01}
\end{equation}
where
\begin{equation}
\begin{split}
\!\!\!\!\!\!\!\!E&\e\gamma_{\mr u}\,m\,c^2\e \texttt{energy of the particle}\\
\!\!\!\!\!\!\!\!\mb p&\e \gamma_{\mr u}m\mb u\e \gamma_{\mr u}m\mr u\mb n\e\texttt{linear momentum 3-vector of the particle}\\
&\Vlr{\mb n}\e 1\\
\end{split}
\tl{C-02}
\end{equation}
while a superluminal plane phase wave has time-like angular frequency Lorentz 4-vector
\begin{equation}
\bl\Omega\e\plr{2\pi\nu, c\dfrac{2\pi}{\lambda}\,\mb m}\e\plr{\omega, c\,\mb k}
\tl{C-03}
\end{equation}
where
\begin{equation}
\begin{split}
\omega &\e2\pi\,\nu\e \texttt{angular frequency of the plane phase wave}\\
\mb k&\e \dfrac{2\pi}{\lambda}\,\mb m\e\texttt{wave number 3-vector of the plane phase wave}\\
\lambda &\e \texttt{wavelength of the plane phase wave}\\
&\Vlr{\mb m}\e 1\\
\end{split}
\tl{C-04}
\end{equation}
This superluminal plane phase wave is moving with velocity
\begin{equation}
\mb w\e\dfrac{\omega}{\Vlr{\mb k}}\mb m\e\lambda\,\nu\,\mb m\e\dfrac{\omega}{\Vlr{\mb k}^2}\mb k\,,\qquad \Vlr{\mb w}\e \mr w\e\lambda\,\nu
\tl{C-05}
\end{equation}
The vector $\:\bl\Omega\:$ of equation \eqref{C-03} is a Lorentz 4-vector. This means that the vector $\:\plr{\omega,c\,k_x,c\,k_y,c\,k_z}\:$ is transformed as the infinitesimal displacement vector $\:\plr{c\mr dt,\mr dx,\mr dy,\mr dz}\:$ in equations \eqref{A-01a}-\eqref{A-01f}.
The de Broglie relation connects the energy-momentum Lorentz 4-vector of the particle $\:\mb P$, equation \eqref{C-01}, with the angular frequency of its accompanying plane phase wave $\:\bl\Omega$, equation \eqref{C-03}
\begin{equation}
\boxed{\:\:c\,\mb P\e \hbar\,\bl\Omega\:\:\vp}\quad\texttt{(de Broglie)}
\tl{C-06}
\end{equation}
The directions of the particle motion $\:\mb n\:$ and of propagation of the plane phase wave $\:\mb m\:$ are identical, while the product of their speeds is a Lorentz scalar invariant
\begin{equation}
\mb m\bl\equiv \mb n\,,\qquad \mr u\,\mr w\e \mr u'\,\mr w'\e c^2\e\texttt{ Lorentz invariant}
\tl{C-07}
\end{equation}
Equating time and space components in equation \eqref{C-06} we have
\begin{equation}
\begin{split}
E&\e\hbar \omega \e h\,\nu\\
\mb p&\e\hbar\mb k\e\dfrac{\,h\,}{\lambda}\,\mb n\\
\end{split}
\tl{C-08}
\end{equation}
Now, all these relations are valid in the limiting case of a $''$luminal$''$ particle, that is a photon, and its accompanying $''$luminal$''$ phase wave, that is light or electromagnetic wave. In this case we have $\: \mr u\e\mr w\e c\e\lambda\,\nu\:$ and equations \eqref{C-08} give the energy-momentum 4-vector of a photon
\begin{equation}
\mb P\e\plr{\dfrac{E}{c},\mb p}\e \dfrac{h\,\nu}{c}\plr{1,\mb n}
\tl{C-09}
\end{equation}
The vector $\:c\mb P\:$ of equation \eqref{C-09} is a Lorentz 4-vector. This means that the components of this vector $\:\plr{h\,\nu,h\,\nu\,n_x,h\,\nu\,n_y,h\,\nu\,n_z}\:$ are transformed as the components of the infinitesimal displacement vector $\:\plr{c\mr dt,\mr dx,\mr dy,\mr dz}\:$ in equations \eqref{A-01a}-\eqref{A-01f}.
So, let again the photon emitted by the light source in its rest frame $\:\mr S'\:$ as shown in Figure-01. For its energy-momentum 4-vector we have
\begin{equation}
c\mb P'\e h\,\nu'\plr{1,\mr n_x',\mr n_y',\mr n_z'}\e\plr{h\,\nu',h\,\nu'\cos\theta',\,h\,\nu'\sin\theta',0}
\tl{C-10}
\end{equation}
Its energy-momentum 4-vector in the frame $\:\mr S\:$ is
\begin{equation}
c\mb P\:\e h\,\nu\:\plr{1,\mr n_x,\mr n_y,\mr n_z}\e\plr{h\,\nu,h\,\nu\cos\theta,\,h\,\nu\sin\theta,0}
\tl{C-11}
\end{equation}
Inserting these vectors in equations \eqref{A-01a}-\eqref{A-01d} in place of $\:\plr{c\,\mr dt',\mr d\mb r' }\:$ and $\:\plr{c\,\mr dt,\mr d\mb r}\:$ respectively we have in details
\begin{align}
h\,\nu\cos\theta &\e\gamma\plr{h\,\nu'\cos\theta'\p\beta\,h\,\nu'}
\tl{C-12a}\\
h\,\nu\sin\theta &\e h\,\nu'\sin\theta'
\tl{C-12b}\\
0 &\e 0
\tl{C-12c}\\
h\,\nu &\e\gamma\plr{h\,\nu'\p \beta\,h\,\nu'\cos\theta'}
\tl{C-12d}
\end{align}
that is
\begin{align}
\dfrac{\nu}{\nu'} &\e\dfrac{\gamma\,\plr{\cos\theta'\p\beta}}{\cos\theta}
\tl{C-13a}\\
\dfrac{\nu}{\nu'} &\e\dfrac{\sin\theta'}{\sin\theta}
\tl{C-13b}\\
\dfrac{\nu}{\nu'} &\e\gamma\plr{1\p\beta\cos\theta'}
\tl{C-13c}
\end{align}
Equating the right hand sides firstly of equations \eqref{C-13a}, \eqref{C-13c} and secondly of equations \eqref{C-13b}, \eqref{C-13c} we get the following equations respectively
\begin{equation}
\cos\theta\e\dfrac{\cos\theta'\p\beta}{1\p\beta\cos\theta'}\:, \quad \sin\theta\e\dfrac{\sin\theta'}{\gamma\plr{1\p\beta\cos\theta'}}
\tl{C-14}
\end{equation}
identical to equations \eqref{B-03}. We meet again the aberration of light as discussed in $\:\bl\S\texttt{B}$.
From the first of the aberration equations \eqref{C-14} we have
\begin{equation}
\cos\theta'\e\dfrac{\cos\theta\m\beta}{1\m\beta\cos\theta}
\tl{C-15}
\end{equation}
Inserting this expression of $\:\cos\theta'\:$ firstly in the second of the aberration equations \eqref{C-14} we get
\begin{equation}
\sin\theta'\e\dfrac{\sin\theta}{\gamma\plr{1\m\beta\cos\theta}}
\tl{C-16}
\end{equation}
and secondly by insertion in equation \eqref{C-13c} we have
\begin{equation}
\dfrac{\nu}{\nu'}\e\dfrac{1}{\gamma\plr{1\m\beta\cos\theta}}
\tl{C-17}
\end{equation}
Finally differentiating any of the equations \eqref{C-14},\eqref{C-15} or \eqref{C-16} yields
\begin{equation}
\dfrac{\mr d\theta'}{\mr d\theta}\e\dfrac{\nu}{\nu'}
\tl{C-18}
\end{equation}
Defining the Doppler factor
\begin{equation}
\mr D\bl\equiv\dfrac{\nu}{\nu'}
\tl{C-19}
\end{equation}
all these relations are given in one stroke below
\begin{equation}
\!\!\!\!\!\!\!\!\!\!\boxed{\:\mr D\e\dfrac{\nu\texttt{(shifted)}}{\nu'\texttt{(unshifted)}}\e\gamma\plr{1\p\beta\cos\theta'}\e\dfrac{1}{\gamma\plr{1\m\beta\cos\theta}}\e\dfrac{\sin\theta'}{\sin\theta}\e\dfrac{\mr d\theta'}{\mr d\theta}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:}
\tl{C-20}
\end{equation}
The relation between the infinitesimal solid angles $\:\mr d\Theta'\e\sin\theta'\mr d\theta'\mr d\phi'\:$ and $\:\mr d\Theta\e\sin\theta\mr d\theta\mr d\phi\:$ could be derived from equations \eqref{C-20}, the Figure-02 and the fact that for the azimuth around $\:\bl\upsilon\:$ angle $\:\phi\:$ we have $\:\mr d\phi\e\mr d\phi'\:$
\begin{equation}
\dfrac{\mr d\Theta'}{\mr d\Theta}\e\dfrac{\sin\theta'\mr d\theta'\mr d\phi'}{\sin\theta\,\mr d\theta\,\mr d\phi}\e\underbrace{\plr{\dfrac{\sin\theta'}{\sin\theta}}}_{\mr D}\underbrace{\plr{\dfrac{\mr d\theta'}{\mr d\theta}}}_{\mr D}\underbrace{\plr{\dfrac{\mr d\phi'}{\mr d\phi}}}_{1}\e\mr D^2
\tl{C-21}
\end{equation}
that is
\begin{equation}
\boxed{\:\dfrac{\mr d\Theta'}{\mr d\Theta}\e \mr D^2\e\plr{\dfrac{\nu}{\nu'}}^2\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:}
\tl{C-22}
\end{equation}
$\bl\S $ D. Intensity changes in the Doppler effect
The proof of the Lorentz invariance of the scalar $\:I_\nu/\nu^3\:$ is based on the Lorentz invariance of the infinitesimal volume element in phase space. But at first we must define the Specific Intensity $\:I_\nu$. So consider a set of rays and construct the infinitesimal area $\:\mr dA\:$ normal to a given ray and look at all rays passing through area element within solid angle $\:\mr d\Omega\:$ of the given ray as shown in the Figure(1) below.

The photon's Specific Intensity $\:I_\nu\:$ is defined to be the total energy \begin{equation}
\mr dE\e h\nu\mr dN
\tl{D-01}
\end{equation}
(where $\:\mr dN\:$ is the number of photons) that crosses this area, per unit area $\:\mr dA$, per unit time $\:\mr dt$, per unit frequency $\:\mr d\nu$, and per unit solid angle $\:\mr d\Omega$
\begin{equation}
I_\nu\bl\equiv\dfrac{\mr dE}{\mr dA\,\mr dt\,\mr d\nu\,\mr d\Omega}
\tl{D-02}
\end{equation}
(i.e., per unit everything)
As respect to the invariance of the infinitesimal volume element in phase space we note in summary the following (see $\texttt{Reference-05}$, Chapter 3): As tools for the study of a collection of a very large number of identical particles (all with the same rest mass $\:m$) consider a tiny 3-dimensional volume $\:\mr d\mc V_x\:$ centered on some location $\:\mb x
\:$ in physical space and a tiny 3-dimensional volume $\:\mr d\mc V_p\:$
centered on location $\:\mb p\:$ in momentum space. Together these make up a
tiny 6-dimensional volume (in Newtonian theory)
\begin{equation}
\mr d^2\mc V\bl\equiv\mr d\mc V_x\mr d\mc V_p
\tl{D-03}
\end{equation}
In any Cartesian coordinate system, we can think of $\:\mr d\mc V_x\:$ as being a tiny cube located at $\:\plr{x,y,z}\:$ and having edge lengths $\:\mr dx,\mr dy,\mr dz$, and similarly for $\:\mr d\mc V_p$. Then, as
computed in this coordinate system, these tiny volumes are
\begin{equation}
\mr d\mc V_x\e\mr dx\,\mr dy\,\mr dz\,,\quad \mr d\mc V_p\e\mr dp_x\,\mr dp_y\,\mr dp_z\,,\quad \mr d^2\mc V\e\mr dx\,\mr dy\,\mr dz\,\mr dp_x\,\mr dp_y\,\mr dp_z
\tl{D-04}
\end{equation}
Denote by $\:\mr dN\:$ the number of particles (all with rest mass $\:m$) that reside inside $\:\mr dN\:$ in phase space (at some moment of time $\:t$). Stated more fully: $\mr dN\:$ is the number of particles that, at time $\:t$, are located in the 3-volume $\:\mr d\mc V_x\:$ centered on the location $\:\mb x\:$ in physical space and that also have momentum vectors whose tips at time $\:t\:$ lie in the 3-volume $\:\mr d\mc V_p\:$ centered on location $\:\mb p\:$ in momentum space. Denote by
\begin{equation}
\boxed{\:\:\mc N\plr{\mb x,\mb p,t}\bl\equiv\dfrac{\mr dN}{\mr d^2\mc V}\e\dfrac{\mr dN}{\mr d\mc V_x\mr d\mc V_p}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}
\tl{D-05}
\end{equation}
the number density of particles at location $\:\plr{\mb x,\mb p}\:$ in phase space at time $\:t$. This is also called the *distribution function.
In Newtonian theory, the volumes $\:\mr d\mc V_x\:$ and $\:\mr d\mc V_p\:$ occupied by our collection of $\:\mr dN\:$ particles are independent of the reference frame that we use to view them.
Not so in relativity theory: $\mr d\mc V_x\:$ undergoes a Lorentz contraction when one views it from a moving frame, $\:\mr d\mc V_p\:$ also changes; but their product $\:\mr d^2\mc V\e\mr d\mc V_x\mr d\mc V_p\:$ is the same in all frames. More precisely in relativity theory it has been proved on one hand that
\begin{equation}
\boxed{\:\:E\,\mr d\mc V_x\e p_0\,\mr d\mc V_x\e\texttt{Lorentz invariant} \Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}
\tl{D-06}
\end{equation}
and on the other hand that
\begin{equation}
\boxed{\:\:\dfrac{\mr d\mc V_p}{E}\e \dfrac{\mr d\mc V_p}{p_0}\e\texttt{Lorentz invariant} \Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}
\tl{D-07}
\end{equation}
Therefore, in relativity theory for the distribution function we have also
\begin{equation}
\boxed{\:\:\mc N\bl\equiv\dfrac{\mr dN}{\mr d^2\mc V}\e\dfrac{\mr dN}{\mr d\mc V_x\mr d\mc V_p}\e\texttt{Lorentz invariant}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}
\tl{D-08}
\end{equation}
Although in derivations and proofs it is assumed nonzero rest mass ($m\bl\ne 0$), the conclusions \eqref{D-06} and \eqref{D-07} continue to hold if we take the limit as $m\rightarrow 0$ and the 4-momenta become null. Correspondingly, \eqref{D-06} to \eqref{D-08} are valid for particles with zero mass also, like photons.
Consider that photons hit the surface area $\:\mr dA\:$ in time interval $\:\mr dt\:$ as shown in the Figure(2) below.

Since the photons move at the speed of light $\:c$, the product of that surface area with $\:c\:$ times the time $\:\mr dt\:$ is equal to the volume
they occupy at a specific moment of time:
\begin{equation}
\mr d\mc V_x\e\mr dA\,\mr dt
\tl{D-09}
\end{equation}
Focus attention on a set $\:S\:$ of photons in this volume that all have nearly the same frequency $\:\nu\:$ and propagation direction $\:\mb n$. Their energies
$\:E\:$ and momenta $\:\mb p\:$ are related to $\:\nu\:$ and $\:\mb n\:$ by equation \eqref{C-09}, that is
\begin{equation}
E\e h\nu\,,\quad \mb p\e\plr{h\nu/c}\mb n
\tl{D-10}
\end{equation}
Their frequencies lie in a range $\:\mr d\nu\:$ centered on $\:\nu\:$, and
they come from a small solid angle $\:\mr d\Omega\:$ centered on $\m\mb n$; the volume they occupy in momentum space is related to these quantities by
\begin{equation}
\mr d\mc V_p\e \Vlr{\mb p}^2\mr d\Omega\,\mr d \Vlr{\mb p}\e\plr{h\nu/c}^2\mr d\Omega\,\plr{h\mr d\nu/c}\e\plr{h/c}^3\nu^2\mr d\Omega\,\mr d\nu
\tl{D-11}
\end{equation}
From the definition of specific intensity, equation \eqref{D-02}, using equations \eqref{D-01}, \eqref{D-09} and \eqref{D-11} we have
\begin{equation}
\boxed{\:\:\mc N\bl\equiv\dfrac{\mr dN}{\mr d^2\mc V}\e\dfrac{\mr dN}{\mr d\mc V_x\mr d\mc V_p}\e\dfrac{c^2}{h^4}\dfrac{I_\nu}{\nu^3}\Vp{\dfrac{\dfrac{a}{b}}{\dfrac{a}{b}}}\:\:}
\tl{D-12}
\end{equation}
that is the scalar $\:I_\nu/\nu^3\:$ is except a constant identical to the distribution function $\:\mc N\:$ so by equation \eqref{D-08} a Lorentz invariant scalar.
$\hebl$
(1)
Figure extracted from $\texttt{Reference-06}$
(2)
Figure extracted from $\texttt{Reference-05}$
$\hebl$

$\hebl$
