$\boldsymbol{\S}\:$A. Preliminary
Consider $\,\mathbf f\,$ to be a 3-vector representing a force applied on a particle of rest mass $\,m_{0}\,$ moving with velocity 3-vector $\,\mathbf u$. If this force is preserving the rest mass $\,m_{0}\,$ of the particle then we can $''$build$''$ a Lorentz 4-vector $\,\mathbf F\,$ as follows
\begin{equation}
\mathbf F \boldsymbol{=}\left(\gamma_{\mathrm u}\mathbf f, \gamma_{\mathrm u}\dfrac{\mathbf f\boldsymbol{\cdot}\mathbf u}{c}\right)
\tag{A-01}\label{A-01}
\end{equation}
where $\,\gamma_{\mathrm u} \boldsymbol{=}1\bigg{/}\sqrt{1\boldsymbol{-}\dfrac{\mathrm u^2}{c^2}}\,$. The 4-vector $\,\mathbf F\,$ of above equation is built to be a Lorentz 4-vector from its very definition as the differential of the 4-momentum Lorentz 4-vector $\,\mathbf P\,$ with respect to the proper time $\,\tau$, a Lorentz invariant scalar
\begin{equation}
\mathbf F \stackrel{\rm def}{\boldsymbol{\equiv\!\!\!\equiv}}\dfrac{\mathrm d\mathbf P}{\mathrm d\tau} \boldsymbol{=}\dfrac{\mathrm d\left(m_{0} \mathbf U\right)}{\mathrm d\tau}\boldsymbol{=}m_{0} \dfrac{\mathrm d\mathbf U}{\mathrm d\tau}
\tag{A-02}\label{A-02}
\end{equation}
We see that for the 4-momentum vector $\,\mathbf P\boldsymbol{=}m_{0} \mathbf U\,$ to be a Lorentz 4-vector we need the rest mass $\,m_{0}\,$ to be invariant because in turn the velocity 4-vector $\,\mathbf U\boldsymbol{=}\mathrm d\mathbf X/\mathrm d\tau\,$ is a Lorentz one. To see a method to build Lorentz 4-vectors from other ones take a look in my answer here "Is mass still a scalar in special relativity?".
As concerns to the electromagnetic Lorentz 3-force $\,\mathbf f\boldsymbol{=}q\left(\mathbf E\boldsymbol{+}\mathbf u \boldsymbol{\times}\mathbf B\right)\,$ the 4-vector $\,\mathbf F\,$ was built in the early years of Special Relativity as in equation \eqref{A-01} but it's property as a Lorentz 4-vector was proved based on the Lorentz transformation of the 3-vectors $\,\left(\mathbf E,\mathbf B,\mathbf u\right)\,$ and the hypothesis of the electric charge $\,q\,$ invariance and NOT by the definition \eqref{A-02} and the hypothesis of the rest mass $\,m_{0}\,$ invariance. May be this fact is an indirect verification that the electromagnetic Lorentz 3-force preserves the rest mass $\,m_{0}\,$ of the particles on which is applied. For details see my answer here
"Are magnetic fields just modified relativistic electric fields?".
$\boldsymbol{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!}$
$\boldsymbol{\S}\:$B.The Proof
For convenience we'll start with the electromagnetic Lorentz 3-force per unit electric charge
\begin{equation}
\mathbf f \boldsymbol{=}
\mathbf E\boldsymbol{+}\mathbf u \boldsymbol{\times}\mathbf B \boldsymbol{=}\boldsymbol{-}\boldsymbol{\nabla}\phi \boldsymbol{+}\dfrac{\partial \mathbf A}{\partial t}\boldsymbol{+}\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)
\tag{B-01}\label{B-01}
\end{equation}
in order not to transfer to all subsequent equations the charge $\,q\,$ and the necessary braces or parentheses or brackets etc.
By this 3-vector $\,\mathbf f\,$ we'll build the 4-vector $\,\mathbf F\,$ of equation \eqref{A-01} and we'll prove that the latter is identical to the expression in the brackets of the rhs of equation (02) of the question.
Now, in order not to have confusion about signs $\,\boldsymbol{\pm}\,$, covariant and contravariant vectors etc we clarify the following : if we have the coordinate frame $\,\left(\rm x,y,z\right)$, the potentials, the velocity and the force
\begin{equation}
\mathbf A \boldsymbol{=}\left(\rm A_x,A_y,A_z\right)\,, \quad \mathrm A_t\boldsymbol{=}\phi/c\,,\quad \mathbf u \boldsymbol{=}\left(\rm u_x,u_y,u_z\right)\,,\quad \mathbf f \boldsymbol{=}\left(\rm f_x,f_y,f_z\right)
\tag{B-02}\label{B-02}
\end{equation}
then using the $\boldsymbol{+---}$ sign convention we have for tensors
\begin{align}
&\begin{bmatrix}
\:\:x^1 \:\:\vphantom{\dfrac{a}{b}}\\
x^2 \vphantom{\dfrac{a}{b}}\\
x^3 \vphantom{\dfrac{a}{b}}\\
x^0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\:\:\rm x\:\: \vphantom{\dfrac{a}{b}}\\
\rm y \vphantom{\dfrac{a}{b}}\\
\rm z \vphantom{\dfrac{a}{b}}\\
ct \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{-}x_1 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}x_2 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}x_3 \vphantom{\dfrac{a}{b}}\\
\hphantom{\boldsymbol{-}}x_0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{B-03a}\label{B-03a}\\
&\begin{bmatrix}
\:\:A^1\:\: \vphantom{\dfrac{a}{b}}\\
A^2 \vphantom{\dfrac{a}{b}}\\
A^3 \vphantom{\dfrac{a}{b}}\\
A^0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\:\:\rm A_x \:\:\vphantom{\dfrac{a}{b}}\\
\rm A_y \vphantom{\dfrac{a}{b}}\\
\rm A_z \vphantom{\dfrac{a}{b}}\\
\mathrm A_t \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{-}A_1 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}A_2 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}A_3 \vphantom{\dfrac{a}{b}}\\
\hphantom{\boldsymbol{-}}A_0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}\,,\qquad
\begin{bmatrix}
\:\:U^1 \:\:\vphantom{\dfrac{a}{b}}\\
U^2 \vphantom{\dfrac{a}{b}}\\
U^3 \vphantom{\dfrac{a}{b}}\\
U^0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\rm \gamma_u u_x \vphantom{\dfrac{a}{b}}\\
\rm \gamma_u u_y \vphantom{\dfrac{a}{b}}\\
\rm \gamma_u u_z \vphantom{\dfrac{a}{b}}\\
\rm \gamma_u c\hphantom{_z}\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{-}U_1 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}U_2 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}U_3 \vphantom{\dfrac{a}{b}}\\
\hphantom{\boldsymbol{-}}U_0 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{B-03b}\label{B-03b}\\
&\begin{bmatrix}
\:\:\dfrac{\partial \hphantom{\boldsymbol{x_1}}}{\partial x_1}\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{x_2}}}{\partial x_2} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{x_3}}}{\partial x_3} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{x_0}}}{\partial x_0} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\:\:\dfrac{\partial \hphantom{\boldsymbol{\rm x}}}{\partial \rm x}\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{\rm y}}}{\partial \rm y} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{\rm z}}}{\partial \rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\hphantom{\boldsymbol{\rm x}}\dfrac{\partial \hphantom{\boldsymbol{ct}}}{\partial \rm ct} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{-}\dfrac{\partial \hphantom{\boldsymbol{x^1}}}{\partial x^1} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\boldsymbol{-}\dfrac{\partial \hphantom{\boldsymbol{x^2}}}{\partial x^2} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\boldsymbol{-}\dfrac{\partial \hphantom{\boldsymbol{x^3}}}{\partial x^3} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\hphantom{\boldsymbol{-}}\dfrac{\partial \hphantom{\boldsymbol{x^0}}}{\partial x^0} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\tag{B-03c}\label{B-03c}
\end{align}
From \eqref{A-01} and \eqref{B-01} we have
\begin{equation}
\mathbf F \boldsymbol{=}
\begin{bmatrix}
\:\:F^1\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
F^2\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
F^3 \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
F^0 \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\rm \gamma_u f_x \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm \gamma_u f_y \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm \gamma_u f_z \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm \gamma_u\dfrac{f_x u_x\boldsymbol{+}f_y u_y\boldsymbol{+}f_z u_z}{c} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{-} F_1\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\boldsymbol{-} F_2\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\boldsymbol{-} F_3\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\hphantom{\boldsymbol{-}} F_0\:\: \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\tag{B-04}\label{B-04}
\end{equation}
The $''$space$''$ component $\,F^1\,$ is expressed as
\begin{equation}
F^1 \boldsymbol{=}\gamma_\mathrm u \mathrm{f_x} \boldsymbol{=}\underbrace{ \boldsymbol{-}\gamma_\mathrm u\dfrac{\partial \phi}{\partial \rm x}}_{\boxed{\,1\,}}\boldsymbol{+}\underbrace{\gamma_\mathrm u\dfrac{\partial \rm A_x}{\partial t}}_{\boxed{\,2\,}}\boldsymbol{+}\underbrace{\gamma_\mathrm u\left[\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)\vphantom{\dfrac{a}{b}}\right]_{\rm x}}_{\boxed{\,3\,}}\boldsymbol{=}\boxed{\,1\,}\boldsymbol{+}\boxed{\,2\,}\boldsymbol{+} \boxed{\,3\,}
\tag{B-05}\label{B-05}
\end{equation}
We transform gradually using \eqref{B-03a},\eqref{B-03b} and \eqref{B-03c}
\begin{align}
\boxed{\,1\,} & \boldsymbol{=}\boldsymbol{-}\gamma_\mathrm u\dfrac{\partial \phi}{\partial \rm x}\boldsymbol{=}\boldsymbol{-}\gamma_\mathrm u c\dfrac{\partial \mathrm A_t}{\partial \rm x}\boldsymbol{=}U^0\dfrac{\partial A_0}{\partial x^1}\boldsymbol{=}\dfrac{\partial \left(U^0 A_0\right)}{\partial x^1}
\tag{B-06a}\label{B-06a}\\
\boxed{\,2\,} & \boldsymbol{=}\boldsymbol{+}\gamma_\mathrm u\dfrac{\partial \rm A_x}{\partial t}\boldsymbol{=}\boldsymbol{-}\gamma_\mathrm u c\dfrac{\partial A_1}{\partial (ct)}\boldsymbol{=}\boldsymbol{-}U^0\dfrac{\partial A_1}{\partial x^0}
\tag{B-06b}\label{B-06b}
\end{align}
Preparing $\boxed{\,3\,}$ note that
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A \boldsymbol{=}
\begin{bmatrix}
\mathbf e_{\rm x} & \mathbf e_{\rm y} & \mathbf e_{\rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \hphantom{\boldsymbol{\rm x}}}{\partial \rm x} & \dfrac{\partial \hphantom{\boldsymbol{\rm x}}}{\partial \rm y} & \dfrac{\partial \hphantom{\boldsymbol{\rm x}}}{\partial \rm z}\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm A_x & \rm A_y & \rm A_z\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix} \boldsymbol{=}
\begin{bmatrix}
\dfrac{\partial \rm A_z}{\partial \rm y}\boldsymbol{-}\dfrac{\partial \rm A_y}{\partial \rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \rm A_x}{\partial \rm z}\boldsymbol{-}\dfrac{\partial \rm A_z}{\partial \rm x} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \rm A_y}{\partial \rm x}\boldsymbol{-}\dfrac{\partial \rm A_x}{\partial \rm y} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm x} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm y} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\tag{B-07}\label{B-07}
\end{equation}
so
\begin{align}
& \mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right) \boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
\mathbf e_{\rm x} & \mathbf e_{\rm y} & \mathbf e_{\rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm u_x & \rm u_y & \rm u_z\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm x} & \left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm y} & \left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm z}\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\rm u_y\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm z} \boldsymbol{-}\rm u_z\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm y}\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm u_z\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm x} \boldsymbol{-}\rm u_x\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm u_x\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm y} \boldsymbol{-}\rm u_y\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)_{\rm x} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\nonumber\\
& \begin{bmatrix}
\rm u_y\left(\dfrac{\partial \rm A_y}{\partial \rm x}\boldsymbol{-}\dfrac{\partial \rm A_x}{\partial \rm y}\right) \boldsymbol{-}\rm u_z\left(\dfrac{\partial \rm A_x}{\partial \rm z}\boldsymbol{-}\dfrac{\partial \rm A_z}{\partial \rm x} \right)\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm u_z\left(\dfrac{\partial \rm A_z}{\partial \rm y}\boldsymbol{-}\dfrac{\partial \rm A_y}{\partial \rm z}\right) \boldsymbol{-}\rm u_x\left(\dfrac{\partial \rm A_y}{\partial \rm x}\boldsymbol{-}\dfrac{\partial \rm A_x}{\partial \rm y} \right) \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\rm u_x\left(\dfrac{\partial \rm A_x}{\partial \rm z}\boldsymbol{-}\dfrac{\partial \rm A_z}{\partial \rm x}\right) \boldsymbol{-}\rm u_y\left(\dfrac{\partial \rm A_z}{\partial \rm y}\boldsymbol{-}\dfrac{\partial \rm A_y}{\partial \rm z} \right) \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\nonumber\\
& \begin{bmatrix}
\dfrac{\partial \left(\rm u_x\rm A_x\boldsymbol{+}\rm u_y\rm A_y\boldsymbol{+}\rm u_z\rm A_z\right)}{\partial \rm x}\boldsymbol{-}\left(\rm u_x\dfrac{\partial \rm A_x}{\partial \rm x}\boldsymbol{+}\rm u_y\dfrac{\partial \rm A_x}{\partial \rm y} \boldsymbol{+}\rm u_z\dfrac{\partial \rm A_x}{\partial \rm z} \right)\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \left(\rm u_x\rm A_x\boldsymbol{+}\rm u_y\rm A_y\boldsymbol{+}\rm u_z\rm A_z\right)}{\partial \rm y}\boldsymbol{-}\left(\rm u_x\dfrac{\partial \rm A_y}{\partial \rm x}\boldsymbol{+}\rm u_y\dfrac{\partial \rm A_y}{\partial \rm y} \boldsymbol{+}\rm u_z\dfrac{\partial \rm A_y}{\partial \rm z} \right)\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \left(\rm u_x\rm A_x\boldsymbol{+}\rm u_y\rm A_y\boldsymbol{+}\rm u_z\rm A_z\right)}{\partial \rm z}\boldsymbol{-}\left(\rm u_x\dfrac{\partial \rm A_z}{\partial \rm x}\boldsymbol{+}\rm u_y\dfrac{\partial \rm A_z}{\partial \rm y} \boldsymbol{+}\rm u_z\dfrac{\partial \rm A_z}{\partial \rm z} \right)\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\nonumber\\
& \begin{bmatrix}
\dfrac{\partial \left(\mathbf u\boldsymbol{\cdot}\mathbf A\right)}{\partial \rm x}\boldsymbol{-}\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}\rm A_x\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \left(\mathbf u\boldsymbol{\cdot}\mathbf A\right)}{\partial \rm y}\boldsymbol{-}\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}\rm A_y\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\dfrac{\partial \left(\mathbf u\boldsymbol{\cdot}\mathbf A\right)}{\partial \rm x}\boldsymbol{-}\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}\rm A_x\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\left[\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)\vphantom{\dfrac{a}{b}}\right]_{\rm x} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\left[\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)\vphantom{\dfrac{a}{b}}\right]_{\rm y} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}\\
\left[\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)\vphantom{\dfrac{a}{b}}\right]_{\rm z} \vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}\boldsymbol{=}\boldsymbol{\nabla}\left(\mathbf u\boldsymbol{\cdot}\mathbf A\right)\boldsymbol{-}\left(\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}\right)\mathbf A
\tag{B-08}\label{B-08}
\end{align}
Consequently
\begin{align}
&\boxed{\,3\,} \boldsymbol{=}\gamma_\mathrm u\left[\mathbf u \boldsymbol{\times}\left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf A\right)\vphantom{\dfrac{a}{b}}\right]_{\rm x} \boldsymbol{=}
\nonumber\\
& \dfrac{\partial \left(\gamma_\mathrm u\rm u_x\rm A_x\boldsymbol{+}\gamma_\mathrm u\rm u_y\rm A_y\boldsymbol{+}\gamma_\mathrm u\rm u_z\rm A_z\right)}{\partial \rm x}\boldsymbol{-}\left(\gamma_\mathrm u\rm u_x\dfrac{\partial \rm A_x}{\partial \rm x}\boldsymbol{+}\gamma_\mathrm u\rm u_y\dfrac{\partial \rm A_x}{\partial \rm y} \boldsymbol{+}\gamma_\mathrm u\rm u_z\dfrac{\partial \rm A_x}{\partial \rm z} \right)
\nonumber\\
& \dfrac{\partial \left(U^1A_1\boldsymbol{+}U^2A_2\boldsymbol{+}U^3A_3\right)}{\partial x^1}\boldsymbol{-}\left(U^1\dfrac{\partial A_1}{\partial x^1}\boldsymbol{+}U^2\dfrac{\partial A_1}{\partial x^2}\boldsymbol{+}U^3\dfrac{\partial A_1}{\partial x^3} \right)
\tag{B-09}\label{B-09}
\end{align}
Inserting in equation \eqref{B-05} the expressions of $\,\boxed{1},\boxed{2},\boxed{3}\,$ from equations \eqref{B-06a},\eqref{B-06b},\eqref{B-09} respectively we have
\begin{equation}
F^1 \boldsymbol{=}\dfrac{\partial \left(U^0A_0\boldsymbol{+}U^1A_1\boldsymbol{+}U^2A_2\boldsymbol{+}U^3A_3\right)}{\partial x^1}\boldsymbol{-}\left(U^0\dfrac{\partial A_0}{\partial x^1}\boldsymbol{+}U^1\dfrac{\partial A_1}{\partial x^1}\boldsymbol{+}U^2\dfrac{\partial A_1}{\partial x^2}\boldsymbol{+}U^3\dfrac{\partial A_1}{\partial x^3} \right)
\tag{B-10}\label{B-10}
\end{equation}
Since
\begin{equation}
U^\rho \boldsymbol{=}\dfrac{\mathrm d x^\rho}{\mathrm d \tau}\qquad \left(\rho\boldsymbol{=}0,1,2,3\right)
\tag{B-11}\label{B-11}
\end{equation}
we have for the expression in parentheses of equation \eqref{B-10}
\begin{equation}
\!\!\!\!\!\!\!\!\!\!\!\! U^0\dfrac{\partial A_1}{\partial x^0}\boldsymbol{+}U^1\dfrac{\partial A_1}{\partial x^1}\boldsymbol{+}U^2\dfrac{\partial A_1}{\partial x^2}\boldsymbol{+}U^3\dfrac{\partial A_1}{\partial x^3} \boldsymbol{=} \dfrac{\partial A_1}{\partial x^0}\dfrac{\mathrm d x^0}{\mathrm d \tau}\boldsymbol{+}\dfrac{\partial A_1}{\partial x^1}\dfrac{\mathrm d x^1}{\mathrm d \tau}\boldsymbol{+}\dfrac{\partial A_1}{\partial x^2}\dfrac{\mathrm d x^2}{\mathrm d \tau}\boldsymbol{+}\dfrac{\partial A_1}{\partial x^3}\dfrac{\mathrm d x^3}{\mathrm d \tau}\boldsymbol{=}\dfrac{\mathrm d A_1}{\mathrm d \tau}
\tag{B-12}\label{B-12}
\end{equation}
and equation \eqref{B-10} yields
\begin{equation}
F^1 \boldsymbol{=}\dfrac{\partial \left(U^\nu A_\nu\right)}{\partial x^1}\boldsymbol{-}\dfrac{\mathrm d A_1}{\mathrm d \tau}
\tag{B-13}\label{B-13}
\end{equation}
Similarly for $\,F^2,F^3\,$ so
\begin{equation}
F^\mu \boldsymbol{=}\dfrac{\partial \left(U^\nu A_\nu\right)}{\partial x^\mu}\boldsymbol{-}\dfrac{\mathrm d A_\mu}{\mathrm d \tau} \qquad \left(\mu\boldsymbol{=}1,2,3\right)
\tag{B-14}\label{B-14}
\end{equation}
For the covariant components $\,F_\mu \boldsymbol{=}\boldsymbol{-}F^\mu\:\left(\mu\boldsymbol{=}1,2,3\right)$, see equation \eqref{B-04}
\begin{equation}
F_\mu \boldsymbol{=}\dfrac{\mathrm d A_\mu}{\mathrm d \tau}\boldsymbol{-}\dfrac{\partial \left(U^\nu A_\nu\right)}{\partial x^\mu} \qquad \left(\mu\boldsymbol{=}1,2,3\right)
\tag{B-15}\label{B-15}
\end{equation}
For the $''$time$''$ component $\,F_0 \boldsymbol{=}F^0\,$ we have
\begin{align}
F_0 & \boldsymbol{=}\gamma_{\mathrm u}\dfrac{\mathbf f\boldsymbol{\cdot}\mathbf u}{c}\boldsymbol{=}\boldsymbol{-}\gamma_{\mathrm u}\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}\left(\dfrac{\phi}{c}\right)\boldsymbol{+}\gamma_{\mathrm u}\mathbf u\boldsymbol{\cdot}\dfrac{\partial \mathbf A}{\partial (ct)} \boldsymbol{=}\boldsymbol{-}\gamma_{\mathrm u}\mathbf u\boldsymbol{\cdot}\boldsymbol{\nabla}A_0\boldsymbol{+}\gamma_{\mathrm u}\mathbf u\boldsymbol{\cdot}\dfrac{\partial \mathbf A}{\partial x^0}
\nonumber\\
& \boldsymbol{=}\left(U^1\dfrac{\partial A_0}{\partial x^1}\boldsymbol{+}U^2\dfrac{\partial A_0}{\partial x^2}\boldsymbol{+}U^3\dfrac{\partial A_0}{\partial x^3} \right)\boldsymbol{-}\dfrac{\partial \left(U^1A_1\boldsymbol{+}U^2A_2\boldsymbol{+}U^3A_3\right)}{\partial x^0}
\nonumber\\
& \boldsymbol{=}\left(U^0\dfrac{\partial A_0}{\partial x^0}\boldsymbol{+}U^1\dfrac{\partial A_0}{\partial x^1}\boldsymbol{+}U^2\dfrac{\partial A_0}{\partial x^2}\boldsymbol{+}U^3\dfrac{\partial A_0}{\partial x^3} \right)\boldsymbol{-}\dfrac{\partial \left(U^0A_0\boldsymbol{+}U^1A_1\boldsymbol{+}U^2A_2\boldsymbol{+}U^3A_3\right)}{\partial x^0}
\nonumber\\
& \boldsymbol{\implies}\quad F_0\boldsymbol{=}\dfrac{\mathrm d A_0}{\mathrm d \tau}\boldsymbol{-}\dfrac{\partial \left(U^\nu A_\nu\right)}{\partial x^0}
\tag{B-16}\label{B-16}
\end{align}
that is equation \eqref{B-15} is valid for $\,\mu\boldsymbol{=}0\,$ also, so finally
\begin{equation}
\boxed{\:\:F_\mu \boldsymbol{=}\dfrac{\mathrm d A_\mu}{\mathrm d \tau}\boldsymbol{-}\dfrac{\partial \left(U^\nu A_\nu\right)}{\partial x^\mu} \vphantom{\tfrac{\dfrac{a}{b}}{\dfrac{a}{b}}} \:\:}\qquad \left(\mu\boldsymbol{=}0,1,2,3\right)
\tag{B-17}\label{B-17}
\end{equation}