Correct is the second 'geometrical' representation.
Note the properties : (1) the vectors of the dual basis are parallel to the heights of the parallelogram formed by the vectors of the original basis with magnitudes inversely proportional to these heights and (2) increasing the magnitude of a vector of the original basis the corresponding component is absolutely decreased (that's the term "contra-variant") while the corresponding component with respect to the dual basis is absolutely increased (that's the term "co-variant").
The first picture does not work in agreement with above properties.
$=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!$
$\boldsymbol{\S}\:$A. Reciprocal or dual basis in $\,\mathbb R^2\,$ - Contravariant and covariant components
Consider a basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ in $\,\mathbb R^2\,$ not necessarily orthonormal. Given two vectors $\,\mathbf x,\mathbf y\,$ expressed by components with respect to this basis
\begin{align}
\mathbf x & \boldsymbol{=} \mathrm x^1 \mathbf u_1 \boldsymbol{+} \mathrm x^2\mathbf u_2
\tag{01a}\label{01a}\\
\mathbf y & \boldsymbol{=} \mathrm y^1 \mathbf u_1 \boldsymbol{+} \mathrm y^2\mathbf u_2
\tag{01b}\label{01b}
\end{align}
for the usual inner product we have
\begin{align}
\langle\mathbf x,\mathbf y\rangle & \boldsymbol{=}\langle\mathrm x^1 \mathbf u_1 \boldsymbol{+} \mathrm x^2\mathbf u_2,\mathrm y^1 \mathbf u_1 \boldsymbol{+} \mathrm y^2\mathbf u_2\rangle
\nonumber\\
& \boldsymbol{=}
\mathrm x^1\mathrm y^1\langle\mathbf u_1,\mathbf u_1\rangle\boldsymbol{+}\mathrm x^1\mathrm y^2\langle\mathbf u_1,\mathbf u_2\rangle\boldsymbol{+}\mathrm x^2\mathrm y^1\langle\mathbf u_2,\mathbf u_1\rangle\boldsymbol{+}\mathrm x^2\mathrm y^2\langle\mathbf u_2,\mathbf u_2\rangle
\nonumber\\
& \boldsymbol{=}
\Vert\mathbf u_1\Vert^2\mathrm x^1\mathrm y^1\boldsymbol{+}\langle\mathbf u_1,\mathbf u_2\rangle\mathrm x^1\mathrm y^2\boldsymbol{+}\langle\mathbf u_2,\mathbf u_1\rangle\mathrm x^2\mathrm y^1\boldsymbol{+}\Vert\mathbf u_2\Vert^2\mathrm x^2\mathrm y^2
\nonumber\\
& \boldsymbol{=}
g_{11}\mathrm x^1\mathrm y^1\boldsymbol{+}g_{12}\mathrm x^1\mathrm y^2\boldsymbol{+}g_{21}\mathrm x^2\mathrm y^1\boldsymbol{+}g_{22}\mathrm x^2\mathrm y^2
\tag{02}\label{02}
\end{align}
that is using the Einstein's summation convention
\begin{equation}
\langle\mathbf x,\mathbf y\rangle \boldsymbol{=}g_{ij}\mathrm x^i\mathrm y^j \qquad \left(i,j \boldsymbol{=}1,2\right)
\tag{03}\label{03}
\end{equation}
where
\begin{equation}
\mathfrak g \boldsymbol{=}\{g_{ij}\}\boldsymbol{=}
\begin{bmatrix}
g_{11} & g_{12}\vphantom{\dfrac{a}{b}}\\
g_{21} & g_{22}\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\:\Vert\mathbf u_1\Vert^2 & \langle\mathbf u_1,\mathbf u_2\rangle\vphantom{\dfrac{a}{b}}\\
\langle\mathbf u_2,\mathbf u_1\rangle & \:\Vert\mathbf u_2\Vert^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{04}\label{04}
\end{equation}
the metric matrix (tensor).
We know that a matrix is not a linear transformation by itself. To represent correctly a linear transformation of a linear space $\,V\,$ on itself by a matrix, the domain space and the image space must be equipped each one with its basis. For example, in our case, suppose that we have a linear transformation $\,F\,$ from $\,\mathbb R^2\,$ on itself, the space equipped with basis $\,\{\mathbf u_1,\mathbf u_2\}\,$
\begin{equation}
\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf u_1,\mathbf u_2\}\bigg) \stackrel{F}{\boldsymbol{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\rightarrow}}\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf u_1,\mathbf u_2\}\bigg)
\tag{05}\label{05}
\end{equation}
then $\,F\,$ would be represented by a well-defined matrix
\begin{equation}
\mathfrak f \left(F\right)\boldsymbol{=}\{f_{ij}\}\boldsymbol{=}
\begin{bmatrix}
f_{11} & f_{12}\vphantom{\dfrac{a}{b}}\\
f_{21} & f_{22}\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{06}\label{06}
\end{equation}
but if the image space is equipped with a different basis
\begin{equation}
\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf u_1,\mathbf u_2\}\bigg) \stackrel{F}{\boldsymbol{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\rightarrow}}\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf w_1,\mathbf w_2\}\bigg)
\tag{07}\label{07}
\end{equation}
the matrix representation of $\,F\,$ would be different
\begin{equation}
\mathfrak f' \left(F\right)\boldsymbol{=}\{f'_{ij}\}\boldsymbol{=}
\begin{bmatrix}
f'_{11} & f'_{12}\vphantom{\dfrac{a}{b}}\\
f'_{21} & f'_{22}\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{\ne}\mathfrak f \left(F\right)
\tag{08}\label{08}
\end{equation}
Note also that if the transformation in equation \eqref{05} is the identity transformation, $\,F\boldsymbol{=}I\,$, then it will represented by the identity matrix
\begin{equation}
\mathfrak f \left(F\right)\boldsymbol{=}\mathcal I\boldsymbol{=}
\begin{bmatrix}
\:\: 1\:\: & \:\: 0\:\:\vphantom{\dfrac{a}{b}}\\
\:\: 0\:\: & \:\: 1\:\:\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{09}\label{09}
\end{equation}
while this is not valid if $\,F\boldsymbol{=}I\,$ in equation \eqref{07}.
We give now the following definition :
Definition : A basis $\,\{\mathbf u^1,\mathbf u^2\}\,$ in $\,\mathbb R^2\,$ is called reciprocal to or dual of a given original basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ in $\,\mathbb R^2\,$ if the identity transformation
\begin{equation}
\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf u_1,\mathbf u_2\}\bigg) \stackrel{I}{\boldsymbol{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\rightarrow}}\bigg(\mathbb R^2\boldsymbol{,}\{\mathbf u^1,\mathbf u^2\}\bigg)
\tag{10}\label{10}
\end{equation}
is represented by the metric matrix $\,\mathfrak g \,$ induced by the original basis
\begin{equation}
\mathfrak g \boldsymbol{=}\{g_{ij}\}\boldsymbol{=}
\begin{bmatrix}
g_{11} & g_{12}\vphantom{\dfrac{a}{b}}\\
g_{21} & g_{22}\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\:\Vert\mathbf u_1\Vert^2 & \langle\mathbf u_1,\mathbf u_2\rangle\vphantom{\dfrac{a}{b}}\\
\langle\mathbf u_2,\mathbf u_1\rangle & \:\Vert\mathbf u_2\Vert^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{11}\label{11}
\end{equation}
A vector $\,\mathbf x\,$ expressed by components with respect to the original basis, see equation \eqref{01a}
\begin{equation}
\mathbf x \boldsymbol{=} \mathrm x^1 \mathbf u_1 \boldsymbol{+} \mathrm x^2\mathbf u_2
\tag{12}\label{12}
\end{equation}
would be expressed with respect to the dual basis as
\begin{equation}
\mathbf x \boldsymbol{=} \mathrm x_1 \mathbf u^1 \boldsymbol{+} \mathrm x_2\mathbf u^2
\tag{13}\label{13}
\end{equation}
and since it is this same vector in $\,\mathbb R^2\,$
\begin{equation}
\mathrm x^1 \mathbf u_1 \boldsymbol{+} \mathrm x^2\mathbf u_2\boldsymbol{=} \mathbf x \boldsymbol{=} \mathrm x_1 \mathbf u^1 \boldsymbol{+} \mathrm x_2\mathbf u^2
\tag{14}\label{14}
\end{equation}
Essentially we have here a transformation of coordinates given by
\begin{equation}
\begin{bmatrix}
\mathrm x_1\vphantom{\dfrac{a}{b}}\\
\mathrm x_2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\mathfrak g
\begin{bmatrix}
\mathrm x^1\vphantom{\dfrac{a}{b}}\\
\mathrm x^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
g_{11} & g_{12}\vphantom{\dfrac{a}{b}}\\
g_{21} & g_{22}\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\mathrm x^1\vphantom{\dfrac{a}{b}}\\
\mathrm x^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{15}\label{15}
\end{equation}
or
\begin{equation}
\mathrm x_i\boldsymbol{=} g_{ij}\mathrm x^j
\tag{16}\label{16}
\end{equation}
The inner product of equation \eqref{03} is expressed as
\begin{equation}
\mathrm x^i\mathrm y_i\boldsymbol{=}\langle\mathbf x,\mathbf y\rangle \boldsymbol{=}\mathrm x_j\mathrm y^j
\tag{17}\label{17}
\end{equation}
since on one hand $\,g_{ij}\mathrm y^j\boldsymbol{=}\mathrm y_i\,$ and on the other hand, due to the symmetry of $\,\mathfrak g\,$, we have $\,g_{ij}\mathrm x^i\boldsymbol{=}g_{ji}\mathrm x^i\boldsymbol{=}\mathrm x_j\,$.
With respect to the original basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ the components with upper index $\,\mathrm x^k\,$ are called contravariant while the components with the lower index $\,\mathrm x_k\,$ are called covariant.
We'll determine now the relation of the dual basis $\,\{\mathbf u^1,\mathbf u^2\}\,$ to the original $\,\{\mathbf u_1,\mathbf u_2\}\,$ and based on this we'll provide a geometrical construction-representation.
Formally we have
\begin{equation}
\begin{bmatrix}
\mathbf u_1\vphantom{\dfrac{a}{b}}\\
\mathbf u_2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\mathfrak g^{\boldsymbol{\top}}
\begin{bmatrix}
\mathbf u^1\vphantom{\dfrac{a}{b}}\\
\mathbf u^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\stackrel{\mathfrak g^{\boldsymbol{\top}}\!\boldsymbol{=}\mathfrak g}{\boldsymbol{=\!=\!=}}
\mathfrak g
\begin{bmatrix}
\mathbf u^1\vphantom{\dfrac{a}{b}}\\
\mathbf u^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{18}\label{18}
\end{equation}
so
\begin{equation}
\begin{bmatrix}
\mathbf u^1\vphantom{\dfrac{a}{b}}\\
\mathbf u^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\mathfrak g^{\boldsymbol{-}1}
\begin{bmatrix}
\mathbf u_1\vphantom{\dfrac{a}{b}}\\
\mathbf u_2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{19}\label{19}
\end{equation}
From equation \eqref{11} we have
\begin{equation}
\mathfrak g^{\boldsymbol{-}1} \boldsymbol{=}
\dfrac{1}{\vert\mathfrak g\vert}
\begin{bmatrix}
\hphantom{\boldsymbol{-}}g_{22} & \boldsymbol{-}g_{12}\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}g_{21} & \hphantom{\boldsymbol{-}}g_{11}\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\dfrac{1}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}
\begin{bmatrix}
\hphantom{\boldsymbol{-}} \:\Vert\mathbf u_2\Vert^2 & \boldsymbol{-}\langle\mathbf u_1,\mathbf u_2\rangle\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-} \langle\mathbf u_2,\mathbf u_1\rangle & \hphantom{\boldsymbol{-}}\:\Vert\mathbf u_1\Vert^2\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{20}\label{20}
\end{equation}
where
\begin{equation}
\vert\mathfrak g\vert\boldsymbol{=}\det{\mathfrak g} \boldsymbol{=}g_{11}g_{22}\boldsymbol{-}g_{21}g_{12}\boldsymbol{=}\Vert\mathbf u_1\Vert^2\Vert\mathbf u_2\Vert^2\boldsymbol{-} \vert\langle\mathbf u_1,\mathbf u_2\rangle\vert^2\boldsymbol{=}\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2
\tag{21}\label{21}
\end{equation}
From equations \eqref{19},\eqref{20}
\begin{align}
\mathbf u^1 & \boldsymbol{=} \hphantom{\boldsymbol{-}}\left(\dfrac{\Vert\mathbf u_2\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\right) \mathbf u_1 \boldsymbol{-} \left(\dfrac{\langle\mathbf u_1,\mathbf u_2\rangle}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\right)\mathbf u_2
\tag{22a}\label{22a}\\
\mathbf u^2 & \boldsymbol{=} \boldsymbol{-} \left(\dfrac{\langle\mathbf u_2,\mathbf u_1\rangle}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\right) \mathbf u_1 \boldsymbol{+} \left(\dfrac{\Vert\mathbf u_1\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\right)\mathbf u_2
\tag{22b}\label{22b}
\end{align}
These expressions take the form
\begin{align}
\mathbf u^1 & \boldsymbol{=} \dfrac{\Vert\mathbf u_2\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\Biggl(\mathbf u_1 \boldsymbol{-}\bigg\langle\mathbf u_1, \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert}\bigg\rangle \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert}\Biggr)
\tag{23a}\label{23a}\\
\mathbf u^2 & \boldsymbol{=} \dfrac{\Vert\mathbf u_1\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\Biggl(\mathbf u_2 \boldsymbol{-}\bigg\langle\mathbf u_2, \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\bigg\rangle \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\Biggr)
\tag{23b}\label{23b}
\end{align}
Note that
\begin{align}
\bigg\langle\mathbf u_1, \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert}\bigg\rangle \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert} & \boldsymbol{=}\bigl(\mathbf u_{1}\bigr)_{\boldsymbol{||}\mathbf u_2} \boldsymbol{=}\bigl[\texttt{vectorial projection of } \mathbf u_1 \texttt{ on } \mathbf u_2\bigr]
\tag{24a}\label{24a}\\
\bigg\langle\mathbf u_2, \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\bigg\rangle \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}& \boldsymbol{=} \bigl(\mathbf u_{2}\bigr)_{\boldsymbol{||}\mathbf u_1} \boldsymbol{=}\bigl[\texttt{vectorial projection of } \mathbf u_2 \texttt{ on } \mathbf u_1\bigr]
\tag{24b}\label{24b}
\end{align}
so
\begin{align}
\mathbf u_1 & \boldsymbol{-}\bigg\langle\mathbf u_1, \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert}\bigg\rangle \dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert} \boldsymbol{=}\left(\dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert}\boldsymbol{\times}\mathbf u_1\right) \boldsymbol{\times}\dfrac{\mathbf u_2}{\Vert\mathbf u_2\Vert} \boldsymbol{=}\bigl(\mathbf u_{1}\bigr)_{\boldsymbol{\perp}\mathbf u_2}
\nonumber\\
& \boldsymbol{=}\bigl[\texttt{vectorial projection of } \mathbf u_1 \texttt{ on direction normal to } \mathbf u_2 \bigr]
\tag{25a}\label{25a}\\
\mathbf u_2 & \boldsymbol{-}\bigg\langle\mathbf u_2, \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\bigg\rangle \dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert} \boldsymbol{=}\left(\dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\boldsymbol{\times}\mathbf u_2\right) \boldsymbol{\times}\dfrac{\mathbf u_1}{\Vert\mathbf u_1\Vert}\boldsymbol{=}\bigl(\mathbf u_{2}\bigr)_{\boldsymbol{\perp}\mathbf u_1}
\nonumber\\
& \boldsymbol{=}\bigl[\texttt{vectorial projection of } \mathbf u_2 \texttt{ on direction normal to } \mathbf u_1 \bigr]
\tag{25b}\label{25b}
\end{align}
and equations \eqref{23a},\eqref{23b} yield
\begin{align}
\mathbf u^1 & \boldsymbol{=} \dfrac{\Vert\mathbf u_2\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\bigl(\mathbf u_{1}\bigr)_{\boldsymbol{\perp}\mathbf u_2}
\tag{26a}\label{26a}\\
\mathbf u^2 & \boldsymbol{=} \dfrac{\Vert\mathbf u_1\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\bigl(\mathbf u_{2}\bigr)_{\boldsymbol{\perp}\mathbf u_1}
\tag{26b}\label{26b}
\end{align}
Note that if $\,\phi_{12}\in[0,\pi]\,$ is the angle between the vectors of the original basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ then
\begin{align}
\left\Vert\bigl(\mathbf u_{1}\bigr)_{\boldsymbol{\perp}\mathbf u_2} \right\Vert & \boldsymbol{=} \Vert\mathbf u_1\Vert\sin\phi_{12}\boldsymbol{=}h_1\,,\qquad \dfrac{\Vert\mathbf u_2\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\boldsymbol{=}\dfrac{1}{ \Vert\mathbf u_1\Vert^2\sin\phi^2_{12}}\boldsymbol{=}\dfrac{1}{h^2_1}
\tag{27a}\label{27a}\\
\left\Vert\bigl(\mathbf u_{2}\bigr)_{\boldsymbol{\perp}\mathbf u_1} \right\Vert & \boldsymbol{=} \Vert\mathbf u_2\Vert\sin\phi_{12}\boldsymbol{=}h_2\,,\qquad \dfrac{\Vert\mathbf u_1\Vert^2}{\Vert\mathbf u_1\boldsymbol{\times}\mathbf u_2\Vert^2}\boldsymbol{=}\dfrac{1}{ \Vert\mathbf u_2\Vert^2\sin\phi^2_{12}}\boldsymbol{=}\dfrac{1}{h^2_2}
\tag{27b}\label{27b}
\end{align}
where $\,h_1,h_2\,$ the heights of the parallelogram formed by the vectors of the original basis $\,\{\mathbf u_1,\mathbf u_2\}$. From \eqref{26a}-\eqref{27a} and \eqref{26b}-\eqref{27b} we have respectively
\begin{equation}
\Vert\mathbf u^1 \Vert \boldsymbol{=} \dfrac{1}{h_1}\,,\qquad \Vert\mathbf u^2 \Vert \boldsymbol{=} \dfrac{1}{h_2}
\tag{28}\label{28}
\end{equation}
Finally
The vectors $\,\mathbf u^1,\mathbf u^2\,$ of the dual basis are orthogonal to the vectors $\,\mathbf u_2,\mathbf u_1\,$ of the original basis respectively with magnitudes the inverse of the heights $\,h_1,h_2\,$ of the parallelogram formed by the vectors of the original basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ respectively.

From above analysis and Figure-01
The vectors $\,\mathbf u_1,\mathbf u_2\,$ of the original basis are orthogonal to the vectors $\,\mathbf u^2,\mathbf u^1\,$ of the dual basis respectively with magnitudes the inverse of the heights $\,h^1,h^2\,$ of the parallelogram formed by the vectors of the dual basis $\,\{\mathbf u^1,\mathbf u^2\}\,$ respectively.
The original basis $\,\{\mathbf u_1,\mathbf u_2\}\,$ is the dual of its dual $\,\{\mathbf u^1,\mathbf u^2\}$.

In Figure-02 we see the geometrical construction of the dual vector $\,\mathbf u^1\,$ from the original $\,\mathbf u_1\,$ one. This figure works inversely also : since the original basis is the dual of its dual we see the geometrical construction of the original vector $\,\mathbf u_1\,$ from the dual $\,\mathbf u^1\,$ one.

In Figure-03 we see the analysis of a vector $\,\mathbf x\,$ in components with respect to the original basis (contravariant) and with respect to the dual basis (covariant).
