Starting with the rotations matrix
\begin{align*}
&[\,_1^3\,\mathbf S\,]=[\,_1^2\,\mathbf S\,]\,[\,_2^3\,\mathbf S\,]\quad\Rightarrow\quad
[\,_1^3\,\mathbf{\dot{S}}\,]=[\,_1^2\,\mathbf{\dot{S}}\,]\,[\,_2^3\,\mathbf S\,]+
[\,_1^2\,\mathbf S\,]\,[\,_2^3\,\mathbf{\dot{S}}\,]\\
&\text{with}\quad \mathbf{\dot{S}}=\mathbf{\tilde{\omega}}\,\mathbf S\quad
\mathbf{\tilde{\omega}}= \left[ \begin {array}{ccc} 0&-\omega_{{z}}&\omega_{{y}}
\\ \omega_{{z}}&0&-\omega_{{x}}\\
-\omega_{{y}}&\omega_{{x}}&0\end {array} \right]\quad\Rightarrow
\\\\
&\mathbf{\tilde{\omega}}_{13}[\,_1^3\,\mathbf{{S}}\,]=
\mathbf{\tilde{\omega}}_{12}[\,_1^2\,\mathbf{{S}}\,]\,[\,_2^3\,\mathbf S\,]+
[\,_1^2\,\mathbf S\,]\,\mathbf{\tilde{\omega}}_{23}[\,_2^3\,\mathbf{{S}}\,]\\\\
&\text{multiply from the right with}\quad [\,_3^1\,\mathbf{{S}}\,]\\\\
&\mathbf{\tilde{\omega}}_{13}=
\mathbf{\tilde{\omega}}_{12}\underbrace{[\,_1^2\,\mathbf{{S}}\,]\,[\,_2^3\,\mathbf S\,][\,_3^1\,\mathbf{{S}}\,]}_{I_3}+
[\,_1^2\,\mathbf S\,]\,\mathbf{\tilde{\omega}}_{23}\underbrace{[\,_2^3\,\mathbf{{S}}\,][\,_3^1\,\mathbf{{S}}\,]}
_{ [\,_2^1\,\mathbf S\,]}\\
&\text{thus the angular velocity vector}\\
&\mathbf\omega_{13}=\mathbf\omega_{12}+[\,_1^2\,\mathbf S\,]\mathbf\omega_{23}
\end{align*}
\begin{align*}
&\text{with}\\
&[\,_1^2\,\mathbf S\,]=\left[ \begin {array}{ccc} \cos \left( \psi \right) &-\sin \left(
\psi \right) &0\\ \sin \left( \psi \right) &\cos
\left( \psi \right) &0\\ 0&0&1\end {array} \right]
\quad,
[\,_2^3\,\mathbf S\,]=\left[ \begin {array}{ccc} 1&0&0\\ 0&\cos \left(
\phi \right) &-\sin \left( \phi \right) \\ 0
&\sin \left( \phi \right) &\cos \left( \phi \right)
\end {array} \right]
\\
&\mathbf\omega_{12}=\begin{bmatrix}
0 \\
0 \\
\omega_\psi \\
\end{bmatrix}\quad
\mathbf\omega_{23}=\begin{bmatrix}
\omega_\phi \\
0 \\
0 \\
\end{bmatrix}
\end{align*}