All sources I know show how to use d'Alembert's principle and/or Hamilton's principles to derive Lagrange equations. It is also common to use d'Alembert's principle to derive Hamilton's principle (see Lanczos "the variational principles of mechanics", p.112) But what about the opposite direction? If you only have Lagrange equations, how can we derive d'Alembert's principle?
-
see https://physics.stackexchange.com/q/377352/ – hyportnex Dec 18 '22 at 20:21
-
@hyportnex I don't see an answer there. Yes, the principle of virtual work for ideal constraints generalizes to d'Alembert, and from there we get the rest of the analytical mechanics. My question is how to go in the opposite direction. If we have Lagrange's equations, how do we show that the forces of constraint don't do virtual work? – AndresB Dec 19 '22 at 03:21
-
see there the quote from the book of Lanczos – hyportnex Dec 19 '22 at 12:48
2 Answers
Lets look at this example
Pendulum 2D space
the kinetic energy is
$$T=\frac m2 (\dot x^2+\dot y^2)$$
the potential energy is:
$$U=m\,g\,y+\lambda\,\underbrace{(x^2+y^2-l^2)}_{\text {holonomic constraint eq.}}$$
thus the equations of motion
$$\ddot x=-\lambda\,\frac{2\,x}{m}$$ $$\ddot y=-g-\lambda\,\frac{2\,y}{m}$$
how to eliminate the generalized constraint force $~\lambda~$ from the equations of motion ?
the EOM's
\begin{align*} \begin{bmatrix} \ddot{x} \\ \ddot{y}\\ \end{bmatrix}=-\frac\lambda m\,\underbrace{\begin{bmatrix} 2\,x \\ 2\,y \\ \end{bmatrix}}_{\mathbf{C}_c^T}\tag 1 \end{align*}
from the constraint equation
\begin{align*} &z=x^2+y^2-l^2=0\quad\Rightarrow\quad \dot z=2\,x\,\dot x+2\,y\dot y=0\\ & \dot z=\mathbf{C}_c\,\begin{bmatrix} \dot x \\ \dot y \\ \end{bmatrix}=0 \end{align*}
to eliminate the constraint force we multiply from the left equation (1) with
\begin{align*} &\mathbf{J}^T=\begin{bmatrix} -\frac yx & 1 \\ \end{bmatrix}\quad, \mathbf{J}^T\,\mathbf{C}_c^T=0 \end{align*} this is the "d'Alembert principle".
Fazit:
from the holonomic constraint equation you obtain the constraint matrix $~\mathbf{C}_c~$ and from here ein orthogonal matrix $~\mathbf J~$ .
notice that
\begin{align*} \begin{bmatrix} \dot{x} \\ \dot{y}\\ \end{bmatrix}\mapsto\mathbf{J}\,\dot{y} \end{align*} thus $~y~$ is the generalized coordinate , and you can transformed the kinetic and potential energy and obtain the EOM's with out the generalized constraint force
How to obtain the Jacobi matrix $~\mathbf J~$
with:
\begin{align*} &x^2+y^2=l^2\quad\Rightarrow x^2=l^2-y^2\quad ,2\,x\dot{x}=-2\,y\dot{y}\\ &\dot{x}=-\frac{y}{x}\dot{y}\quad,\dot{y}:=\dot{y}\quad\Rightarrow \mathbf{J}=\begin{bmatrix} -\frac{y}{x} \\ 1 \\ \end{bmatrix}=\begin{bmatrix} -\frac{y}{\sqrt{l^2-y^2}}\\ 1 \\ \end{bmatrix} \end{align*} Newton equation of motion
the generalized coordinate if $~y~$ \begin{align*} &m\,\mathbf J^T\,\mathbf J\,\ddot{y}=\mathbf J^T\begin{bmatrix} 0 \\ -m\,g \\ \end{bmatrix} -m\,\,\mathbf J^T\,\frac{\partial \mathbf v}{\partial y}\,\dot{y}\quad, \text{where}~\mathbf v=\mathbf J\,\dot{y}\\ &\Rightarrow \end{align*} \begin{align*} & \ddot{y}=-\left({\frac {y{{\dot{y}}}^{2}}{{l}^{2}-{y}^{2}}}+{\frac { \left( {l}^{2}-{y} ^{2} \right) g}{{l}^{2}}}\right) \end{align*}

- 11,878
-
I understand your point. However, it seems rather limited. In your example, virtual displacements coincide with actual possible displacements allowed by the constraints. That's not the case if for example $l$ changes with time. – AndresB Dec 21 '22 at 13:43
On one hand Lagrange equations $$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}^j} -\frac{\partial T}{\partial q^j}~=~Q_j,\qquad j~\in~\{1, \ldots, n\}, \tag{LE}$$ make sense in pretty much any setting, while on the other hand d'Alembert's principle $$ \sum_{i=1}^N \left(\dot{\bf p}_i-{\bf F}_i\right)\cdot \delta {\bf r}_i ~=~0\tag{DAP} $$ basically only makes sense within the context of Newtonian point mechanics$^1$. It also seems that information about the point particle positions $${\bf r}_i(q^1,\ldots, q^n,t), \qquad i\in\{1, \ldots, N\},$$ in terms of the generalized coordinates $(q^1,\ldots, q^n)$ and time $t$ is needed.
In that case the equivalence of DAP and LE now follows from the following key identity $$ \sum_{i=1}^N \left(\dot{\bf p}_i-{\bf F}_i\right)\cdot \delta {\bf r}_i ~=~ \sum_{j=1}^n \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}^j} -\frac{\partial T}{\partial q^j}-Q_j\right) \delta q^j, $$ where the kinetic energy is $$ T~:=~\sum_{i=1}^N\frac{m_i}{2}v^2_i,$$ and the generalized forces are $$ Q_j~:=~\sum_{i=1}^N{\bf F}_i\cdot \frac{\partial {\bf r}_i}{\partial q^j},\qquad j~\in~\{1, \ldots, n\}, $$ cf. e.g. my related Phys.SE answer here.
References:
- H. Goldstein, Classical Mechanics, Chapter 1.
--
$^1$ A relativistic extension is possible.

- 201,751