In this answer, we take the point of view that the GEM equations in $d$ spacetime dimensions are not a first principle by themselves but can only be justified via an appropriate limit (to be determined) of the linearized EFE$^1$
$$ \begin{align}
\underbrace{\kappa T^{\mu\nu}-\Lambda\eta^{\mu\nu}}_{\text{weak sources}} ~\stackrel{\text{EFE}}{=}~& G^{\mu\nu}\cr
~=~&-\frac{1}{2}\left(\Box \bar{h}^{\mu\nu}
+ \eta^{\mu\nu} \partial_{\rho}\partial_{\sigma} \bar{h}^{\rho\sigma}
- \partial^{\mu}\partial_{\rho} \bar{h}^{\rho\nu}
- \partial^{\nu}\partial_{\rho} \bar{h}^{\rho\mu} \right)
,\cr
\kappa~\equiv~&\frac{8\pi G}{c^4},
\end{align}\tag{1}$$
where
$$ \begin{align}g_{\mu\nu}~&=~\eta_{\mu\nu}+h_{\mu\nu}, \cr
\bar{h}_{\mu\nu}~:=~h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h
\qquad&\Leftrightarrow\qquad
h_{\mu\nu}~=~\bar{h}_{\mu\nu}-\frac{1}{d-2}\eta_{\mu\nu}\bar{h}. \end{align} \tag{2}$$
There may be other approaches that we are unaware of, but reading Ref. 1, the pertinent GEM limit seems to be of E&M static nature, thereby seemingly excluding gravitational waves/radiation.
Concretely, the matter is assumed to be dust:$^2$
$$\begin{align}
T^{0\mu}~\equiv~&T^{\mu 0}~=~cj^{\mu}, \cr
j^{\mu}~=~&\begin{bmatrix} c\rho \cr {\bf J} \end{bmatrix}, \cr
T^{ij}~=~&{\cal O}(c^0), \end{align}\tag{3}$$
and we assume for simplicity that the cosmological constant $\Lambda=0$ is zero$^3$.
The only way to systematically implement a dominating temporal sector/static limit seems to be by going to the Lorenz gauge$^4$
$$\partial_{\mu} \bar{h}^{\mu\nu} ~=~0. \tag{4}$$
Then the linearized EFE (1) simplifies to
$$ -\frac{1}{2}\Box \bar{h}^{\mu\nu}~\stackrel{(1)+(4)}{=}~G^{\mu\nu}~\stackrel{(1)}{=}~\kappa T^{\mu\nu}. \tag{5}$$
In our convention, the GEM ansatz reads$^6$
$$\begin{align} \bar{A}^{\mu}~=~&\begin{bmatrix} \phi/c \cr \bar{\bf A} \end{bmatrix}, \qquad\bar{h}^{ij}~=~{\cal O}(c^{-4}),\cr
-\frac{1}{4}\bar{h}^{\mu\nu} ~=~&\begin{bmatrix} \bar{\phi}/c^2 & \bar{\bf A}^T /c\cr \bar{\bf A}/c & {\cal O}(c^{-4})\end{bmatrix}_{d\times d}\cr
~\Updownarrow~& \cr
-h^{\mu\nu} ~=~&\begin{bmatrix}
4\frac{d-3}{d-2}\frac{\bar{\phi}}{c^2}
& \frac{4}{c}\bar{\bf A}^T \cr \frac{4}{c}\bar{\bf A} & \frac{4}{d-2}\frac{\bar{\phi}}{c^2}{\bf 1}_{(d-1)\times (d-1)}\end{bmatrix}_{d\times d} \cr
~\Updownarrow~& \cr
g_{\mu\nu} ~=~&\begin{bmatrix}
-1-4\frac{d-3}{d-2}\frac{\bar{\phi}}{c^2} &
\frac{4}{c}\bar{\bf A}^T \cr \frac{4}{c}\bar{\bf A} &
\left(1-\frac{4}{d-2}\frac{\bar{\phi}}{c^2}\right)
{\bf 1}_{(d-1)\times (d-1)}\end{bmatrix}_{d\times d}. \end{align}\tag{6}$$
The gravitational Lorenz gauge (4) corresponds to the Lorenz gauge condition
$$ c^{-2}\partial_t\bar{\phi} + \nabla\cdot \bar{\bf A}~\equiv~ \partial_{\mu}\bar{A}^{\mu}~=~0 \tag{7}$$
and the "electrostatic limit"$^4$
$$ \partial_t \bar{\bf A}~=~{\cal O}(c^{-2}).\tag{8}$$
Next define the field strength
$$\begin{align}
\bar{F}_{\mu\nu}~:=~&\partial_{\mu} \bar{A}_{\nu}
-\partial_{\nu} \bar{A}_{\mu}, \cr
-\bar{\bf E}~:=~&{\bf \nabla} \bar{\phi}
+\partial_t\bar{\bf A}, \cr
\bar{B}_{ij}~:=~&\bar{F}_{ij}.\end{align} \tag{9} $$
Then the tempotemporal & the spatiotemporal sectors of the linearized EFE (1) become the gravitational Maxwell equations with sources
$$ \partial_{\mu} \bar{F}^{\mu\nu}
~\stackrel{(7)}{=}~\Box\bar{A}^{\nu}
~\stackrel{(5)+(6)}{=}~\frac{c^2\kappa}{2}j^{\nu}
~\equiv~\frac{4\pi G}{c^2}j^{\nu}
. \tag{10} $$
Note that the gravitational (electric) field ${\bf E}$ should be inwards (outwards) for a positive mass (charge), respectively. For this reason, in this answer/Wikipedia, the GEM equations (10) and the Maxwell equations have opposite$^5$ signs.
Interestingly, a gravitational gauge transformation of the form
$$\begin{align}\delta h_{\mu\nu}~=~&\partial_{\mu}\varepsilon_{\nu}+(\mu\leftrightarrow\nu), \cr
\varepsilon_{\nu}~:=~&c^{-1}\delta^0_{\nu}~\varepsilon, \end{align}\tag{11} $$ leads to
$$\delta h~=~-2c^{-1}\partial_0\varepsilon \tag{12}$$
and thereby to the usual gauge transformations
$$\delta \bar{A}_{\mu}~=~\partial_{\mu}\varepsilon.\tag{13}$$
Such gauge transformations (13) preserve the GEM eqs. (10) but violate the GEM ansatz
$\bar{h}^{ij}={\cal O}(c^{-4})$ unless
$$\partial_t\varepsilon~=~{\cal O}(c^{-2}).\tag{14}$$
In conclusion, the Lorenz gauge condition (7) is not necessary, but we seem to be stuck with the "electrostatic limit" (8).
References:
- B. Mashhoon, Gravitoelectromagnetism: A Brief Review, arXiv:gr-qc/0311030.
--
$^1$ In this answer we use Minkowski sign convention $(-,+,\ldots,+)$ and work in the SI-system. Space-indices $i,j,\ldots \in\{1,2,\ldots, d\!-\!1\}$ are Roman letters, while spacetime indices $\mu,\nu,\ldots \in\{0,1,2,\ldots, d\!-\!1\}$ are Greek letters.
$^2$ Warning: The $j^{\mu}$ current (3) does not transform covariantly under Lorentz boosts. The non-inertial frames that Wikipedia mentions are presumably because the $g_{\mu\nu}$-metric (2) is non-Minkowskian.
$^3$ To include a small cosmological constant $\Lambda$, let us introduce the notation that $\bar{\bar{h}}_{\mu\nu}$ solves the linearized EFE with $\Lambda=0$ in the Lorenz gauge
$$\quad\partial_{\mu}\bar{\bar{h}}^{\mu\nu}~=~0.\tag{15}$$
The solution for the linearized EFE (1) with a small cosmological constant $\Lambda$ then takes the following form.
Lorentz-invariant ansatz:
$$\begin{align}
\bar{h}_{\mu\nu}~=~&\bar{\bar{h}}_{\mu\nu} +\frac{\Lambda x^2}{2(d-1)}\eta_{\mu\nu} \cr
~\Updownarrow~& \cr
h_{\mu\nu}~=~&\bar{\bar{h}}_{\mu\nu}-\frac{1}{d-2}\eta_{\mu\nu}\bar{\bar{h}}
-\frac{\Lambda x^2}{(d-1)(d-2)}\eta_{\mu\nu}
.\end{align}\tag{16}$$
Stationary spherically symmetric ansatz:
$$\begin{align}
\bar{h}_{\mu\nu}~=~&
\bar{\bar{h}}_{\mu\nu}\cr
&+ \frac{\Lambda r^2}{2(d-2)} \begin{bmatrix} -\frac{d-3}{d-1} & {\bf 0}^T \cr {\bf 0} & {\bf 1}_{(d-1)\times (d-1)} \end{bmatrix}_{d\times d} \cr
~\Updownarrow~& \cr
h_{\mu\nu}~=~&\bar{\bar{h}}_{\mu\nu}-\frac{1}{d-2}\eta_{\mu\nu}\bar{\bar{h}}\cr
&+ \frac{\Lambda r^2}{(d-1)(d-2)} \begin{bmatrix} 2 & {\bf 0}^T \cr {\bf 0} & -{\bf 1}_{(d-1)\times (d-1)} \end{bmatrix}_{d\times d}
.\end{align}\tag{17}$$
$^4$ The Lorenz gauge (4) is the linearized de Donder/harmonic gauge
$$ \partial_{\mu}(\sqrt{|g|} g^{\mu\nu})~=~0.\tag{18}$$
$^5$ We unconventionally call eq. (8) the "electrostatic limit" since the term $\partial_t{\bf A}$ enters the definition (9) of ${\bf E}$.
$^6$ Warning: In Mashhoon (Ref. 1) the GEM equations (10) and the Maxwell equations have the same sign. For comparison, in this Phys.SE answer with $d=4$
$$\bar{\phi}~=~-\phi^{\text{Mashhoon}}, \qquad
\bar{\bf E}~=~-{\bf E}^{\text{Mashhoon}}, $$
$$\bar{\bf A}~=~-\frac{1}{2c}{\bf A}^{\text{Mashhoon}}, \qquad
\bar{\bf B}~=~-\frac{1}{2c}{\bf B}^{\text{Mashhoon}}.\tag{19}$$